mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-12 12:59:07 +00:00
RAG template for MongoDB Atlas Vector Search (#12526)
This commit is contained in:
3
templates/rag-mongo/rag_mongo/__init__.py
Normal file
3
templates/rag-mongo/rag_mongo/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from rag_mongo.chain import chain
|
||||
|
||||
__all__ = ["chain"]
|
79
templates/rag-mongo/rag_mongo/chain.py
Normal file
79
templates/rag-mongo/rag_mongo/chain.py
Normal file
@@ -0,0 +1,79 @@
|
||||
import os
|
||||
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||||
from langchain.vectorstores import MongoDBAtlasVectorSearch
|
||||
from pymongo import MongoClient
|
||||
|
||||
# Set DB
|
||||
if os.environ.get("MONGO_URI", None) is None:
|
||||
raise Exception("Missing `MONGO_URI` environment variable.")
|
||||
MONGO_URI = os.environ["MONGO_URI"]
|
||||
|
||||
DB_NAME = "langchain-test-2"
|
||||
COLLECTION_NAME = "test"
|
||||
ATLAS_VECTOR_SEARCH_INDEX_NAME = "default"
|
||||
|
||||
client = MongoClient(MONGO_URI)
|
||||
db = client[DB_NAME]
|
||||
MONGODB_COLLECTION = db[COLLECTION_NAME]
|
||||
|
||||
### Ingest code - you may need to run this the first time
|
||||
"""
|
||||
# Load
|
||||
from langchain.document_loaders import WebBaseLoader
|
||||
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
|
||||
data = loader.load()
|
||||
|
||||
# Split
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
||||
all_splits = text_splitter.split_documents(data)
|
||||
|
||||
# Add to vectorDB
|
||||
# Insert the documents in MongoDB Atlas Vector Search
|
||||
vectorstore = MongoDBAtlasVectorSearch.from_documents(
|
||||
documents=all_splits,
|
||||
embedding=OpenAIEmbeddings(disallowed_special=()),
|
||||
collection=MONGODB_COLLECTION,
|
||||
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME
|
||||
)
|
||||
retriever = vectorstore.as_retriever()
|
||||
"""
|
||||
|
||||
# Read from MongoDB Atlas Vector Search
|
||||
vectorstore = MongoDBAtlasVectorSearch.from_connection_string(
|
||||
MONGO_URI,
|
||||
DB_NAME + "." + COLLECTION_NAME,
|
||||
OpenAIEmbeddings(disallowed_special=()),
|
||||
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
|
||||
)
|
||||
retriever = vectorstore.as_retriever()
|
||||
|
||||
# RAG prompt
|
||||
template = """Answer the question based only on the following context:
|
||||
{context}
|
||||
Question: {question}
|
||||
"""
|
||||
prompt = ChatPromptTemplate.from_template(template)
|
||||
|
||||
# RAG
|
||||
model = ChatOpenAI()
|
||||
chain = (
|
||||
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||
| prompt
|
||||
| model
|
||||
| StrOutputParser()
|
||||
)
|
||||
|
||||
|
||||
# Add typing for input
|
||||
class Question(BaseModel):
|
||||
__root__: str
|
||||
|
||||
|
||||
chain = chain.with_types(input_type=Question)
|
Reference in New Issue
Block a user