mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-30 18:33:40 +00:00
Add how-to guide on runnable generators (#12135)
<!-- Thank you for contributing to LangChain! Replace this entire comment with: - **Description:** a description of the change, - **Issue:** the issue # it fixes (if applicable), - **Dependencies:** any dependencies required for this change, - **Tag maintainer:** for a quicker response, tag the relevant maintainer (see below), - **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out! Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally. See contribution guidelines for more information on how to write/run tests, lint, etc: https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md If you're adding a new integration, please include: 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/extras` directory. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17. -->
This commit is contained in:
parent
02dce74b97
commit
2719e49718
119
docs/docs/expression_language/how_to/generators.ipynb
Normal file
119
docs/docs/expression_language/how_to/generators.ipynb
Normal file
@ -0,0 +1,119 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Custom generator functions\n",
|
||||||
|
"\n",
|
||||||
|
"You can use generator functions (ie. functions that use the `yield` keyword, and behave like iterators) in a LCEL pipeline.\n",
|
||||||
|
"\n",
|
||||||
|
"The signature of these generators should be `Iterator[Input] -> Iterator[Output]`. Or for async generators: `AsyncIterator[Input] -> AsyncIterator[Output]`.\n",
|
||||||
|
"\n",
|
||||||
|
"These are useful for:\n",
|
||||||
|
"- implementing a custom output parser\n",
|
||||||
|
"- modifying the output of a previous step, while preserving streaming capabilities\n",
|
||||||
|
"\n",
|
||||||
|
"Let's implement a custom output parser for comma-separated lists."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"lion, tiger, wolf, gorilla, panda\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"from typing import Iterator, List\n",
|
||||||
|
"\n",
|
||||||
|
"from langchain.chat_models import ChatOpenAI\n",
|
||||||
|
"from langchain.prompts.chat import ChatPromptTemplate\n",
|
||||||
|
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"prompt = ChatPromptTemplate.from_template(\n",
|
||||||
|
" \"Write a comma-separated list of 5 animals similar to: {animal}\"\n",
|
||||||
|
")\n",
|
||||||
|
"model = ChatOpenAI(temperature=0.0)\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"str_chain = prompt | model | StrOutputParser()\n",
|
||||||
|
"\n",
|
||||||
|
"print(str_chain.invoke({\"animal\": \"bear\"}))\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# This is a custom parser that splits an iterator of llm tokens\n",
|
||||||
|
"# into a list of strings separated by commas\n",
|
||||||
|
"def split_into_list(input: Iterator[str]) -> Iterator[List[str]]:\n",
|
||||||
|
" # hold partial input until we get a comma\n",
|
||||||
|
" buffer = \"\"\n",
|
||||||
|
" for chunk in input:\n",
|
||||||
|
" # add current chunk to buffer\n",
|
||||||
|
" buffer += chunk\n",
|
||||||
|
" # while there are commas in the buffer\n",
|
||||||
|
" while \",\" in buffer:\n",
|
||||||
|
" # split buffer on comma\n",
|
||||||
|
" comma_index = buffer.index(\",\")\n",
|
||||||
|
" # yield everything before the comma\n",
|
||||||
|
" yield [buffer[:comma_index].strip()]\n",
|
||||||
|
" # save the rest for the next iteration\n",
|
||||||
|
" buffer = buffer[comma_index + 1 :]\n",
|
||||||
|
" # yield the last chunk\n",
|
||||||
|
" yield [buffer.strip()]\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"['lion', 'tiger', 'wolf', 'gorilla', 'panda']\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"list_chain = str_chain | split_into_list\n",
|
||||||
|
"\n",
|
||||||
|
"print(list_chain.invoke({\"animal\": \"bear\"}))\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.11.5"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user