mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-20 13:54:48 +00:00
community[minor]: added new document loaders based on dedoc library (#24303)
### Description This pull request added new document loaders to load documents of various formats using [Dedoc](https://github.com/ispras/dedoc): - `DedocFileLoader` (determine file types automatically and parse) - `DedocPDFLoader` (for `PDF` and images parsing) - `DedocAPIFileLoader` (determine file types automatically and parse using Dedoc API without library installation) [Dedoc](https://dedoc.readthedocs.io) is an open-source library/service that extracts texts, tables, attached files and document structure (e.g., titles, list items, etc.) from files of various formats. The library is actively developed and maintained by a group of developers. `Dedoc` supports `DOCX`, `XLSX`, `PPTX`, `EML`, `HTML`, `PDF`, images and more. Full list of supported formats can be found [here](https://dedoc.readthedocs.io/en/latest/#id1). For `PDF` documents, `Dedoc` allows to determine textual layer correctness and split the document into paragraphs. ### Issue This pull request extends variety of document loaders supported by `langchain_community` allowing users to choose the most suitable option for raw documents parsing. ### Dependencies The PR added a new (optional) dependency `dedoc>=2.2.5` ([library documentation](https://dedoc.readthedocs.io)) to the `extended_testing_deps.txt` ### Twitter handle None ### Add tests and docs 1. Test for the integration: `libs/community/tests/integration_tests/document_loaders/test_dedoc.py` 2. Example notebook: `docs/docs/integrations/document_loaders/dedoc.ipynb` 3. Information about the library: `docs/docs/integrations/providers/dedoc.mdx` ### Lint and test Done locally: - `make format` - `make lint` - `make integration_tests` - `make docs_build` (from the project root) --------- Co-authored-by: Nasty <bogatenkova.anastasiya@mail.ru>
This commit is contained in:
parent
5ac936a284
commit
2a70a07aad
484
docs/docs/integrations/document_loaders/dedoc.ipynb
Normal file
484
docs/docs/integrations/document_loaders/dedoc.ipynb
Normal file
@ -0,0 +1,484 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6b74f73d-1763-42d0-9c24-8f65f445bb72",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Dedoc\n",
|
||||
"\n",
|
||||
"This sample demonstrates the use of `Dedoc` in combination with `LangChain` as a `DocumentLoader`.\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"[Dedoc](https://dedoc.readthedocs.io) is an [open-source](https://github.com/ispras/dedoc)\n",
|
||||
"library/service that extracts texts, tables, attached files and document structure\n",
|
||||
"(e.g., titles, list items, etc.) from files of various formats.\n",
|
||||
"\n",
|
||||
"`Dedoc` supports `DOCX`, `XLSX`, `PPTX`, `EML`, `HTML`, `PDF`, images and more.\n",
|
||||
"Full list of supported formats can be found [here](https://dedoc.readthedocs.io/en/latest/#id1).\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support |\n",
|
||||
"|:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----:|:------------:|:----------:|\n",
|
||||
"| [DedocFileLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.dedoc.DedocFileLoader.html) | [langchain_community](https://api.python.langchain.com/en/latest/community_api_reference.html) | ❌ | beta | ❌ |\n",
|
||||
"| [DedocPDFLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.DedocPDFLoader.html) | [langchain_community](https://api.python.langchain.com/en/latest/community_api_reference.html) | ❌ | beta | ❌ | \n",
|
||||
"| [DedocAPIFileLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.dedoc.DedocAPIFileLoader.html) | [langchain_community](https://api.python.langchain.com/en/latest/community_api_reference.html) | ❌ | beta | ❌ | \n",
|
||||
"\n",
|
||||
"\n",
|
||||
"### Loader features\n",
|
||||
"\n",
|
||||
"Methods for lazy loading and async loading are available, but in fact, document loading is executed synchronously.\n",
|
||||
"\n",
|
||||
"| Source | Document Lazy Loading | Async Support |\n",
|
||||
"|:------------------:|:---------------------:|:-------------:| \n",
|
||||
"| DedocFileLoader | ❌ | ❌ |\n",
|
||||
"| DedocPDFLoader | ❌ | ❌ | \n",
|
||||
"| DedocAPIFileLoader | ❌ | ❌ | \n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"* To access `DedocFileLoader` and `DedocPDFLoader` document loaders, you'll need to install the `dedoc` integration package.\n",
|
||||
"* To access `DedocAPIFileLoader`, you'll need to run the `Dedoc` service, e.g. `Docker` container (please see [the documentation](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html#install-and-run-dedoc-using-docker) \n",
|
||||
"for more details):\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"docker pull dedocproject/dedoc\n",
|
||||
"docker run -p 1231:1231\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"`Dedoc` installation instruction is given [here](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "511c109d-a5c3-42ba-914e-5d1b385bc40f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Install package\n",
|
||||
"%pip install --quiet \"dedoc[torch]\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6820c0e9-d56d-4899-b8c8-374760360e2b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "c1f98cae-71ec-4d60-87fb-96c1a76851d8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders import DedocFileLoader\n",
|
||||
"\n",
|
||||
"loader = DedocFileLoader(\"./example_data/state_of_the_union.txt\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5d7bc2b3-73a0-4cd6-8014-cc7184aa9d4a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Load"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "b9097c14-6168-4726-819e-24abb9a63b13",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'\\nMadam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and t'"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"docs = loader.load()\n",
|
||||
"docs[0].page_content[:100]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9ed8bd46-0047-4ccc-b2d6-beb7761f7312",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Lazy Load"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "6ae12d7e-8105-4bbe-9031-0e968475f6bf",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and t\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"docs = loader.lazy_load()\n",
|
||||
"\n",
|
||||
"for doc in docs:\n",
|
||||
" print(doc.page_content[:100])\n",
|
||||
" break"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8772ae40-6239-4751-bb2d-b4a9415c1ad1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed information on configuring and calling `Dedoc` loaders, please see the API references: \n",
|
||||
"\n",
|
||||
"* https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.dedoc.DedocFileLoader.html\n",
|
||||
"* https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.DedocPDFLoader.html\n",
|
||||
"* https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.dedoc.DedocAPIFileLoader.html"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c4d5e702-0e21-4cad-a4c3-b9b3bff77203",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Loading any file\n",
|
||||
"\n",
|
||||
"For automatic handling of any file in a [supported format](https://dedoc.readthedocs.io/en/latest/#id1),\n",
|
||||
"`DedocFileLoader` can be useful.\n",
|
||||
"The file loader automatically detects the file type with a correct extension.\n",
|
||||
"\n",
|
||||
"File parsing process can be configured through `dedoc_kwargs` during the `DedocFileLoader` class initialization.\n",
|
||||
"Here the basic examples of some options usage are given, \n",
|
||||
"please see the documentation of `DedocFileLoader` and \n",
|
||||
"[dedoc documentation](https://dedoc.readthedocs.io/en/latest/parameters/parameters.html) \n",
|
||||
"to get more details about configuration parameters."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "de97d0ed-d6b1-44e0-b392-1f3d89c762f9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Basic example"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "50ffeeee-db12-4801-b208-7e32ea3d72ad",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'\\nMadam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \\n\\n\\n\\nLast year COVID-19 kept us apart. This year we are finally together again. \\n\\n\\n\\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \\n\\n\\n\\nWith a duty to one another to the American people to '"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders import DedocFileLoader\n",
|
||||
"\n",
|
||||
"loader = DedocFileLoader(\"./example_data/state_of_the_union.txt\")\n",
|
||||
"\n",
|
||||
"docs = loader.load()\n",
|
||||
"\n",
|
||||
"docs[0].page_content[:400]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "457e5d4c-a4ee-4f31-ae74-3f75a1bbd0af",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Modes of split\n",
|
||||
"\n",
|
||||
"`DedocFileLoader` supports different types of document splitting into parts (each part is returned separately).\n",
|
||||
"For this purpose, `split` parameter is used with the following options:\n",
|
||||
"* `document` (default value): document text is returned as a single langchain `Document` object (don't split);\n",
|
||||
"* `page`: split document text into pages (works for `PDF`, `DJVU`, `PPTX`, `PPT`, `ODP`);\n",
|
||||
"* `node`: split document text into `Dedoc` tree nodes (title nodes, list item nodes, raw text nodes);\n",
|
||||
"* `line`: split document text into textual lines."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "eec54d31-ae7a-4a3c-aa10-4ae276b1e4c4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"2"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"loader = DedocFileLoader(\n",
|
||||
" \"./example_data/layout-parser-paper.pdf\",\n",
|
||||
" split=\"page\",\n",
|
||||
" pages=\":2\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"docs = loader.load()\n",
|
||||
"\n",
|
||||
"len(docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "61e11769-4780-4f77-b10e-27db6936f226",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Handling tables\n",
|
||||
"\n",
|
||||
"`DedocFileLoader` supports tables handling when `with_tables` parameter is \n",
|
||||
"set to `True` during loader initialization (`with_tables=True` by default). \n",
|
||||
"\n",
|
||||
"Tables are not split - each table corresponds to one langchain `Document` object.\n",
|
||||
"For tables, `Document` object has additional `metadata` fields `type=\"table\"` \n",
|
||||
"and `text_as_html` with table `HTML` representation."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "bbeb2f8a-ac5e-4b59-8026-7ea3fc14c928",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"('table',\n",
|
||||
" '<table border=\"1\" style=\"border-collapse: collapse; width: 100%;\">\\n<tbody>\\n<tr>\\n<td colspan=\"1\" rowspan=\"1\">Team</td>\\n<td colspan=\"1\" rowspan=\"1\"> "Payroll (millions)"</td>\\n<td colspan=\"1\" r')"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"loader = DedocFileLoader(\"./example_data/mlb_teams_2012.csv\")\n",
|
||||
"\n",
|
||||
"docs = loader.load()\n",
|
||||
"\n",
|
||||
"docs[1].metadata[\"type\"], docs[1].metadata[\"text_as_html\"][:200]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b4a2b872-2aba-4e4c-8b2f-83a5a81ee1da",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Handling attached files\n",
|
||||
"\n",
|
||||
"`DedocFileLoader` supports attached files handling when `with_attachments` is set \n",
|
||||
"to `True` during loader initialization (`with_attachments=False` by default). \n",
|
||||
"\n",
|
||||
"Attachments are split according to the `split` parameter.\n",
|
||||
"For attachments, langchain `Document` object has an additional metadata \n",
|
||||
"field `type=\"attachment\"`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "bb9d6c1c-e24c-4979-88a0-38d54abd6332",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"('attachment',\n",
|
||||
" '\\nContent-Type\\nmultipart/mixed; boundary=\"0000000000005d654405f082adb7\"\\nDate\\nFri, 23 Dec 2022 12:08:48 -0600\\nFrom\\nMallori Harrell <mallori@unstructured.io>\\nMIME-Version\\n1.0\\nMessage-ID\\n<CAPgNNXSzLVJ-d1OCX_TjFgJU7ugtQrjFybPtAMmmYZzphxNFYg@mail.gmail.com>\\nSubject\\nFake email with attachment\\nTo\\nMallori Harrell <mallori@unstructured.io>')"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"loader = DedocFileLoader(\n",
|
||||
" \"./example_data/fake-email-attachment.eml\",\n",
|
||||
" with_attachments=True,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"docs = loader.load()\n",
|
||||
"\n",
|
||||
"docs[1].metadata[\"type\"], docs[1].page_content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d435c3f6-703a-4064-8307-ace140de967a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Loading PDF file\n",
|
||||
"\n",
|
||||
"If you want to handle only `PDF` documents, you can use `DedocPDFLoader` with only `PDF` support.\n",
|
||||
"The loader supports the same parameters for document split, tables and attachments extraction.\n",
|
||||
"\n",
|
||||
"`Dedoc` can extract `PDF` with or without a textual layer, \n",
|
||||
"as well as automatically detect its presence and correctness.\n",
|
||||
"Several `PDF` handlers are available, you can use `pdf_with_text_layer` \n",
|
||||
"parameter to choose one of them.\n",
|
||||
"Please see [parameters description](https://dedoc.readthedocs.io/en/latest/parameters/pdf_handling.html) \n",
|
||||
"to get more details.\n",
|
||||
"\n",
|
||||
"For `PDF` without a textual layer, `Tesseract OCR` and its language packages should be installed.\n",
|
||||
"In this case, [the instruction](https://dedoc.readthedocs.io/en/latest/tutorials/add_new_language.html) can be useful."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "0103a7f3-6b5e-4444-8f4d-83dd3724a9af",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'\\n2\\n\\nZ. Shen et al.\\n\\n37], layout detection [38, 22], table detection [26], and scene text detection [4].\\n\\nA generalized learning-based framework dramatically reduces the need for the\\n\\nmanual specification of complicated rules, which is the status quo with traditional\\n\\nmethods. DL has the potential to transform DIA pipelines and benefit a broad\\n\\nspectrum of large-scale document digitization projects.\\n'"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders import DedocPDFLoader\n",
|
||||
"\n",
|
||||
"loader = DedocPDFLoader(\n",
|
||||
" \"./example_data/layout-parser-paper.pdf\", pdf_with_text_layer=\"true\", pages=\"2:2\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"docs = loader.load()\n",
|
||||
"\n",
|
||||
"docs[0].page_content[:400]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "13061995-1805-40c2-a77a-a6cd80999e20",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Dedoc API\n",
|
||||
"\n",
|
||||
"If you want to get up and running with less set up, you can use `Dedoc` as a service.\n",
|
||||
"**`DedocAPIFileLoader` can be used without installation of `dedoc` library.**\n",
|
||||
"The loader supports the same parameters as `DedocFileLoader` and\n",
|
||||
"also automatically detects input file types.\n",
|
||||
"\n",
|
||||
"To use `DedocAPIFileLoader`, you should run the `Dedoc` service, e.g. `Docker` container (please see [the documentation](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html#install-and-run-dedoc-using-docker) \n",
|
||||
"for more details):\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"docker pull dedocproject/dedoc\n",
|
||||
"docker run -p 1231:1231\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"Please do not use our demo URL `https://dedoc-readme.hf.space` in your code."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "211fc0b5-6080-4974-a6c1-f982bafd87d6",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'\\nMadam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \\n\\n\\n\\nLast year COVID-19 kept us apart. This year we are finally together again. \\n\\n\\n\\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \\n\\n\\n\\nWith a duty to one another to the American people to '"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders import DedocAPIFileLoader\n",
|
||||
"\n",
|
||||
"loader = DedocAPIFileLoader(\n",
|
||||
" \"./example_data/state_of_the_union.txt\",\n",
|
||||
" url=\"https://dedoc-readme.hf.space\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"docs = loader.load()\n",
|
||||
"\n",
|
||||
"docs[0].page_content[:400]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "faaff475-5209-436f-bcde-97d58daed05c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.19"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
56
docs/docs/integrations/providers/dedoc.mdx
Normal file
56
docs/docs/integrations/providers/dedoc.mdx
Normal file
@ -0,0 +1,56 @@
|
||||
# Dedoc
|
||||
|
||||
>[Dedoc](https://dedoc.readthedocs.io) is an [open-source](https://github.com/ispras/dedoc)
|
||||
library/service that extracts texts, tables, attached files and document structure
|
||||
(e.g., titles, list items, etc.) from files of various formats.
|
||||
|
||||
`Dedoc` supports `DOCX`, `XLSX`, `PPTX`, `EML`, `HTML`, `PDF`, images and more.
|
||||
Full list of supported formats can be found [here](https://dedoc.readthedocs.io/en/latest/#id1).
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
### Dedoc library
|
||||
|
||||
You can install `Dedoc` using `pip`.
|
||||
In this case, you will need to install dependencies,
|
||||
please go [here](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html)
|
||||
to get more information.
|
||||
|
||||
```bash
|
||||
pip install dedoc
|
||||
```
|
||||
|
||||
### Dedoc API
|
||||
|
||||
If you are going to use `Dedoc` API, you don't need to install `dedoc` library.
|
||||
In this case, you should run the `Dedoc` service, e.g. `Docker` container (please see
|
||||
[the documentation](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html#install-and-run-dedoc-using-docker)
|
||||
for more details):
|
||||
|
||||
```bash
|
||||
docker pull dedocproject/dedoc
|
||||
docker run -p 1231:1231
|
||||
```
|
||||
|
||||
## Document Loader
|
||||
|
||||
* For handling files of any formats (supported by `Dedoc`), you can use `DedocFileLoader`:
|
||||
|
||||
```python
|
||||
from langchain_community.document_loaders import DedocFileLoader
|
||||
```
|
||||
|
||||
* For handling PDF files (with or without a textual layer), you can use `DedocPDFLoader`:
|
||||
|
||||
```python
|
||||
from langchain_community.document_loaders import DedocPDFLoader
|
||||
```
|
||||
|
||||
* For handling files of any formats without library installation,
|
||||
you can use `Dedoc API` with `DedocAPIFileLoader`:
|
||||
|
||||
```python
|
||||
from langchain_community.document_loaders import DedocAPIFileLoader
|
||||
```
|
||||
|
||||
Please see a [usage example](/docs/integrations/document_loaders/dedoc) for more details.
|
@ -16,6 +16,7 @@ cloudpickle>=2.0.0
|
||||
cohere>=4,<6
|
||||
databricks-vectorsearch>=0.21,<0.22
|
||||
datasets>=2.15.0,<3
|
||||
dedoc>=2.2.6,<3
|
||||
dgml-utils>=0.3.0,<0.4
|
||||
elasticsearch>=8.12.0,<9
|
||||
esprima>=4.0.1,<5
|
||||
|
@ -142,6 +142,10 @@ if TYPE_CHECKING:
|
||||
from langchain_community.document_loaders.dataframe import (
|
||||
DataFrameLoader,
|
||||
)
|
||||
from langchain_community.document_loaders.dedoc import (
|
||||
DedocAPIFileLoader,
|
||||
DedocFileLoader,
|
||||
)
|
||||
from langchain_community.document_loaders.diffbot import (
|
||||
DiffbotLoader,
|
||||
)
|
||||
@ -340,6 +344,7 @@ if TYPE_CHECKING:
|
||||
)
|
||||
from langchain_community.document_loaders.pdf import (
|
||||
AmazonTextractPDFLoader,
|
||||
DedocPDFLoader,
|
||||
MathpixPDFLoader,
|
||||
OnlinePDFLoader,
|
||||
PagedPDFSplitter,
|
||||
@ -570,6 +575,9 @@ _module_lookup = {
|
||||
"CubeSemanticLoader": "langchain_community.document_loaders.cube_semantic",
|
||||
"DataFrameLoader": "langchain_community.document_loaders.dataframe",
|
||||
"DatadogLogsLoader": "langchain_community.document_loaders.datadog_logs",
|
||||
"DedocAPIFileLoader": "langchain_community.document_loaders.dedoc",
|
||||
"DedocFileLoader": "langchain_community.document_loaders.dedoc",
|
||||
"DedocPDFLoader": "langchain_community.document_loaders.pdf",
|
||||
"DiffbotLoader": "langchain_community.document_loaders.diffbot",
|
||||
"DirectoryLoader": "langchain_community.document_loaders.directory",
|
||||
"DiscordChatLoader": "langchain_community.document_loaders.discord",
|
||||
@ -771,6 +779,9 @@ __all__ = [
|
||||
"CubeSemanticLoader",
|
||||
"DataFrameLoader",
|
||||
"DatadogLogsLoader",
|
||||
"DedocAPIFileLoader",
|
||||
"DedocFileLoader",
|
||||
"DedocPDFLoader",
|
||||
"DiffbotLoader",
|
||||
"DirectoryLoader",
|
||||
"DiscordChatLoader",
|
||||
|
546
libs/community/langchain_community/document_loaders/dedoc.py
Normal file
546
libs/community/langchain_community/document_loaders/dedoc.py
Normal file
@ -0,0 +1,546 @@
|
||||
import html
|
||||
import json
|
||||
import os
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import (
|
||||
Dict,
|
||||
Iterator,
|
||||
Optional,
|
||||
Tuple,
|
||||
Union,
|
||||
)
|
||||
|
||||
from langchain_core.documents import Document
|
||||
|
||||
from langchain_community.document_loaders.base import BaseLoader
|
||||
|
||||
|
||||
class DedocBaseLoader(BaseLoader, ABC):
|
||||
"""
|
||||
Base Loader that uses `dedoc` (https://dedoc.readthedocs.io).
|
||||
|
||||
Loader enables extracting text, tables and attached files from the given file:
|
||||
* `Text` can be split by pages, `dedoc` tree nodes, textual lines
|
||||
(according to the `split` parameter).
|
||||
* `Attached files` (when with_attachments=True)
|
||||
are split according to the `split` parameter.
|
||||
For attachments, langchain Document object has an additional metadata field
|
||||
`type`="attachment".
|
||||
* `Tables` (when with_tables=True) are not split - each table corresponds to one
|
||||
langchain Document object.
|
||||
For tables, Document object has additional metadata fields `type`="table"
|
||||
and `text_as_html` with table HTML representation.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
file_path: str,
|
||||
*,
|
||||
split: str = "document",
|
||||
with_tables: bool = True,
|
||||
with_attachments: Union[str, bool] = False,
|
||||
recursion_deep_attachments: int = 10,
|
||||
pdf_with_text_layer: str = "auto_tabby",
|
||||
language: str = "rus+eng",
|
||||
pages: str = ":",
|
||||
is_one_column_document: str = "auto",
|
||||
document_orientation: str = "auto",
|
||||
need_header_footer_analysis: Union[str, bool] = False,
|
||||
need_binarization: Union[str, bool] = False,
|
||||
need_pdf_table_analysis: Union[str, bool] = True,
|
||||
delimiter: Optional[str] = None,
|
||||
encoding: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize with file path and parsing parameters.
|
||||
|
||||
Args:
|
||||
file_path: path to the file for processing
|
||||
split: type of document splitting into parts (each part is returned
|
||||
separately), default value "document"
|
||||
"document": document text is returned as a single langchain Document
|
||||
object (don't split)
|
||||
"page": split document text into pages (works for PDF, DJVU, PPTX, PPT,
|
||||
ODP)
|
||||
"node": split document text into tree nodes (title nodes, list item
|
||||
nodes, raw text nodes)
|
||||
"line": split document text into lines
|
||||
with_tables: add tables to the result - each table is returned as a single
|
||||
langchain Document object
|
||||
|
||||
Parameters used for document parsing via `dedoc`
|
||||
(https://dedoc.readthedocs.io/en/latest/parameters/parameters.html):
|
||||
|
||||
with_attachments: enable attached files extraction
|
||||
recursion_deep_attachments: recursion level for attached files
|
||||
extraction, works only when with_attachments==True
|
||||
pdf_with_text_layer: type of handler for parsing PDF documents,
|
||||
available options
|
||||
["true", "false", "tabby", "auto", "auto_tabby" (default)]
|
||||
language: language of the document for PDF without a textual layer and
|
||||
images, available options ["eng", "rus", "rus+eng" (default)],
|
||||
the list of languages can be extended, please see
|
||||
https://dedoc.readthedocs.io/en/latest/tutorials/add_new_language.html
|
||||
pages: page slice to define the reading range for parsing PDF documents
|
||||
is_one_column_document: detect number of columns for PDF without
|
||||
a textual layer and images, available options
|
||||
["true", "false", "auto" (default)]
|
||||
document_orientation: fix document orientation (90, 180, 270 degrees)
|
||||
for PDF without a textual layer and images, available options
|
||||
["auto" (default), "no_change"]
|
||||
need_header_footer_analysis: remove headers and footers from the output
|
||||
result for parsing PDF and images
|
||||
need_binarization: clean pages background (binarize) for PDF without a
|
||||
textual layer and images
|
||||
need_pdf_table_analysis: parse tables for PDF without a textual layer
|
||||
and images
|
||||
delimiter: column separator for CSV, TSV files
|
||||
encoding: encoding of TXT, CSV, TSV
|
||||
"""
|
||||
self.parsing_parameters = {
|
||||
key: value
|
||||
for key, value in locals().items()
|
||||
if key not in {"self", "file_path", "split", "with_tables"}
|
||||
}
|
||||
self.valid_split_values = {"document", "page", "node", "line"}
|
||||
if split not in self.valid_split_values:
|
||||
raise ValueError(
|
||||
f"Got {split} for `split`, but should be one of "
|
||||
f"`{self.valid_split_values}`"
|
||||
)
|
||||
self.split = split
|
||||
self.with_tables = with_tables
|
||||
self.file_path = file_path
|
||||
|
||||
structure_type = "tree" if self.split == "node" else "linear"
|
||||
self.parsing_parameters["structure_type"] = structure_type
|
||||
self.parsing_parameters["need_content_analysis"] = with_attachments
|
||||
|
||||
def lazy_load(self) -> Iterator[Document]:
|
||||
"""Lazily load documents."""
|
||||
import tempfile
|
||||
|
||||
try:
|
||||
from dedoc import DedocManager
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`dedoc` package not found, please install it with `pip install dedoc`"
|
||||
)
|
||||
dedoc_manager = DedocManager(manager_config=self._make_config())
|
||||
dedoc_manager.config["logger"].disabled = True
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
document_tree = dedoc_manager.parse(
|
||||
file_path=self.file_path,
|
||||
parameters={**self.parsing_parameters, "attachments_dir": tmpdir},
|
||||
)
|
||||
yield from self._split_document(
|
||||
document_tree=document_tree.to_api_schema().dict(), split=self.split
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
def _make_config(self) -> dict:
|
||||
"""
|
||||
Make configuration for DedocManager according to the file extension and
|
||||
parsing parameters.
|
||||
"""
|
||||
pass
|
||||
|
||||
def _json2txt(self, paragraph: dict) -> str:
|
||||
"""Get text (recursively) of the document tree node."""
|
||||
subparagraphs_text = "\n".join(
|
||||
[
|
||||
self._json2txt(subparagraph)
|
||||
for subparagraph in paragraph["subparagraphs"]
|
||||
]
|
||||
)
|
||||
text = (
|
||||
f"{paragraph['text']}\n{subparagraphs_text}"
|
||||
if subparagraphs_text
|
||||
else paragraph["text"]
|
||||
)
|
||||
return text
|
||||
|
||||
def _parse_subparagraphs(
|
||||
self, document_tree: dict, document_metadata: dict
|
||||
) -> Iterator[Document]:
|
||||
"""Parse recursively document tree obtained by `dedoc`."""
|
||||
if len(document_tree["subparagraphs"]) > 0:
|
||||
for subparagraph in document_tree["subparagraphs"]:
|
||||
yield from self._parse_subparagraphs(
|
||||
document_tree=subparagraph, document_metadata=document_metadata
|
||||
)
|
||||
else:
|
||||
yield Document(
|
||||
page_content=document_tree["text"],
|
||||
metadata={**document_metadata, **document_tree["metadata"]},
|
||||
)
|
||||
|
||||
def _split_document(
|
||||
self,
|
||||
document_tree: dict,
|
||||
split: str,
|
||||
additional_metadata: Optional[dict] = None,
|
||||
) -> Iterator[Document]:
|
||||
"""Split document into parts according to the `split` parameter."""
|
||||
document_metadata = document_tree["metadata"]
|
||||
if additional_metadata:
|
||||
document_metadata = {**document_metadata, **additional_metadata}
|
||||
|
||||
if split == "document":
|
||||
text = self._json2txt(paragraph=document_tree["content"]["structure"])
|
||||
yield Document(page_content=text, metadata=document_metadata)
|
||||
|
||||
elif split == "page":
|
||||
nodes = document_tree["content"]["structure"]["subparagraphs"]
|
||||
page_id = nodes[0]["metadata"]["page_id"]
|
||||
page_text = ""
|
||||
|
||||
for node in nodes:
|
||||
if node["metadata"]["page_id"] == page_id:
|
||||
page_text += self._json2txt(node)
|
||||
else:
|
||||
yield Document(
|
||||
page_content=page_text,
|
||||
metadata={**document_metadata, "page_id": page_id},
|
||||
)
|
||||
page_id = node["metadata"]["page_id"]
|
||||
page_text = self._json2txt(node)
|
||||
|
||||
yield Document(
|
||||
page_content=page_text,
|
||||
metadata={**document_metadata, "page_id": page_id},
|
||||
)
|
||||
|
||||
elif split == "line":
|
||||
for node in document_tree["content"]["structure"]["subparagraphs"]:
|
||||
line_metadata = node["metadata"]
|
||||
yield Document(
|
||||
page_content=self._json2txt(node),
|
||||
metadata={**document_metadata, **line_metadata},
|
||||
)
|
||||
|
||||
elif split == "node":
|
||||
yield from self._parse_subparagraphs(
|
||||
document_tree=document_tree["content"]["structure"],
|
||||
document_metadata=document_metadata,
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Got {split} for `split`, but should be one of "
|
||||
f"`{self.valid_split_values}`"
|
||||
)
|
||||
|
||||
if self.with_tables:
|
||||
for table in document_tree["content"]["tables"]:
|
||||
table_text, table_html = self._get_table(table)
|
||||
yield Document(
|
||||
page_content=table_text,
|
||||
metadata={
|
||||
**table["metadata"],
|
||||
"type": "table",
|
||||
"text_as_html": table_html,
|
||||
},
|
||||
)
|
||||
|
||||
for attachment in document_tree["attachments"]:
|
||||
yield from self._split_document(
|
||||
document_tree=attachment,
|
||||
split=self.split,
|
||||
additional_metadata={"type": "attachment"},
|
||||
)
|
||||
|
||||
def _get_table(self, table: dict) -> Tuple[str, str]:
|
||||
"""Get text and HTML representation of the table."""
|
||||
table_text = ""
|
||||
for row in table["cells"]:
|
||||
for cell in row:
|
||||
table_text += " ".join(line["text"] for line in cell["lines"])
|
||||
table_text += "\t"
|
||||
table_text += "\n"
|
||||
|
||||
table_html = (
|
||||
'<table border="1" style="border-collapse: collapse; width: 100%;'
|
||||
'">\n<tbody>\n'
|
||||
)
|
||||
for row in table["cells"]:
|
||||
table_html += "<tr>\n"
|
||||
for cell in row:
|
||||
cell_text = "\n".join(line["text"] for line in cell["lines"])
|
||||
cell_text = html.escape(cell_text)
|
||||
table_html += "<td"
|
||||
if cell["invisible"]:
|
||||
table_html += ' style="display: none" '
|
||||
table_html += (
|
||||
f' colspan="{cell["colspan"]}" rowspan='
|
||||
f'"{cell["rowspan"]}">{cell_text}</td>\n'
|
||||
)
|
||||
table_html += "</tr>\n"
|
||||
table_html += "</tbody>\n</table>"
|
||||
|
||||
return table_text, table_html
|
||||
|
||||
|
||||
class DedocFileLoader(DedocBaseLoader):
|
||||
"""
|
||||
DedocFileLoader document loader integration to load files using `dedoc`.
|
||||
|
||||
The file loader automatically detects the file type (with the correct extension).
|
||||
The list of supported file types is gives at
|
||||
https://dedoc.readthedocs.io/en/latest/index.html#id1.
|
||||
Please see the documentation of DedocBaseLoader to get more details.
|
||||
|
||||
Setup:
|
||||
Install ``dedoc`` package.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U dedoc
|
||||
|
||||
Instantiate:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.document_loaders import DedocFileLoader
|
||||
|
||||
loader = DedocFileLoader(
|
||||
file_path="example.pdf",
|
||||
# split=...,
|
||||
# with_tables=...,
|
||||
# pdf_with_text_layer=...,
|
||||
# pages=...,
|
||||
# ...
|
||||
)
|
||||
|
||||
Load:
|
||||
.. code-block:: python
|
||||
|
||||
docs = loader.load()
|
||||
print(docs[0].page_content[:100])
|
||||
print(docs[0].metadata)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
Some text
|
||||
{
|
||||
'file_name': 'example.pdf',
|
||||
'file_type': 'application/pdf',
|
||||
# ...
|
||||
}
|
||||
|
||||
Lazy load:
|
||||
.. code-block:: python
|
||||
|
||||
docs = []
|
||||
docs_lazy = loader.lazy_load()
|
||||
|
||||
for doc in docs_lazy:
|
||||
docs.append(doc)
|
||||
print(docs[0].page_content[:100])
|
||||
print(docs[0].metadata)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
Some text
|
||||
{
|
||||
'file_name': 'example.pdf',
|
||||
'file_type': 'application/pdf',
|
||||
# ...
|
||||
}
|
||||
"""
|
||||
|
||||
def _make_config(self) -> dict:
|
||||
from dedoc.utils.langchain import make_manager_config
|
||||
|
||||
return make_manager_config(
|
||||
file_path=self.file_path,
|
||||
parsing_params=self.parsing_parameters,
|
||||
split=self.split,
|
||||
)
|
||||
|
||||
|
||||
class DedocAPIFileLoader(DedocBaseLoader):
|
||||
"""
|
||||
Load files using `dedoc` API.
|
||||
The file loader automatically detects the file type (even with the wrong extension).
|
||||
By default, the loader makes a call to the locally hosted `dedoc` API.
|
||||
More information about `dedoc` API can be found in `dedoc` documentation:
|
||||
https://dedoc.readthedocs.io/en/latest/dedoc_api_usage/api.html
|
||||
|
||||
Please see the documentation of DedocBaseLoader to get more details.
|
||||
|
||||
Setup:
|
||||
You don't need to install `dedoc` library for using this loader.
|
||||
Instead, the `dedoc` API needs to be run.
|
||||
You may use Docker container for this purpose.
|
||||
Please see `dedoc` documentation for more details:
|
||||
https://dedoc.readthedocs.io/en/latest/getting_started/installation.html#install-and-run-dedoc-using-docker
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
docker pull dedocproject/dedoc
|
||||
docker run -p 1231:1231
|
||||
|
||||
Instantiate:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.document_loaders import DedocAPIFileLoader
|
||||
|
||||
loader = DedocAPIFileLoader(
|
||||
file_path="example.pdf",
|
||||
# url=...,
|
||||
# split=...,
|
||||
# with_tables=...,
|
||||
# pdf_with_text_layer=...,
|
||||
# pages=...,
|
||||
# ...
|
||||
)
|
||||
|
||||
Load:
|
||||
.. code-block:: python
|
||||
|
||||
docs = loader.load()
|
||||
print(docs[0].page_content[:100])
|
||||
print(docs[0].metadata)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
Some text
|
||||
{
|
||||
'file_name': 'example.pdf',
|
||||
'file_type': 'application/pdf',
|
||||
# ...
|
||||
}
|
||||
|
||||
Lazy load:
|
||||
.. code-block:: python
|
||||
|
||||
docs = []
|
||||
docs_lazy = loader.lazy_load()
|
||||
|
||||
for doc in docs_lazy:
|
||||
docs.append(doc)
|
||||
print(docs[0].page_content[:100])
|
||||
print(docs[0].metadata)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
Some text
|
||||
{
|
||||
'file_name': 'example.pdf',
|
||||
'file_type': 'application/pdf',
|
||||
# ...
|
||||
}
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
file_path: str,
|
||||
*,
|
||||
url: str = "http://0.0.0.0:1231",
|
||||
split: str = "document",
|
||||
with_tables: bool = True,
|
||||
with_attachments: Union[str, bool] = False,
|
||||
recursion_deep_attachments: int = 10,
|
||||
pdf_with_text_layer: str = "auto_tabby",
|
||||
language: str = "rus+eng",
|
||||
pages: str = ":",
|
||||
is_one_column_document: str = "auto",
|
||||
document_orientation: str = "auto",
|
||||
need_header_footer_analysis: Union[str, bool] = False,
|
||||
need_binarization: Union[str, bool] = False,
|
||||
need_pdf_table_analysis: Union[str, bool] = True,
|
||||
delimiter: Optional[str] = None,
|
||||
encoding: Optional[str] = None,
|
||||
) -> None:
|
||||
"""Initialize with file path, API url and parsing parameters.
|
||||
|
||||
Args:
|
||||
file_path: path to the file for processing
|
||||
url: URL to call `dedoc` API
|
||||
split: type of document splitting into parts (each part is returned
|
||||
separately), default value "document"
|
||||
"document": document is returned as a single langchain Document object
|
||||
(don't split)
|
||||
"page": split document into pages (works for PDF, DJVU, PPTX, PPT, ODP)
|
||||
"node": split document into tree nodes (title nodes, list item nodes,
|
||||
raw text nodes)
|
||||
"line": split document into lines
|
||||
with_tables: add tables to the result - each table is returned as a single
|
||||
langchain Document object
|
||||
|
||||
Parameters used for document parsing via `dedoc`
|
||||
(https://dedoc.readthedocs.io/en/latest/parameters/parameters.html):
|
||||
|
||||
with_attachments: enable attached files extraction
|
||||
recursion_deep_attachments: recursion level for attached files
|
||||
extraction, works only when with_attachments==True
|
||||
pdf_with_text_layer: type of handler for parsing PDF documents,
|
||||
available options
|
||||
["true", "false", "tabby", "auto", "auto_tabby" (default)]
|
||||
language: language of the document for PDF without a textual layer and
|
||||
images, available options ["eng", "rus", "rus+eng" (default)],
|
||||
the list of languages can be extended, please see
|
||||
https://dedoc.readthedocs.io/en/latest/tutorials/add_new_language.html
|
||||
pages: page slice to define the reading range for parsing PDF documents
|
||||
is_one_column_document: detect number of columns for PDF without
|
||||
a textual layer and images, available options
|
||||
["true", "false", "auto" (default)]
|
||||
document_orientation: fix document orientation (90, 180, 270 degrees)
|
||||
for PDF without a textual layer and images, available options
|
||||
["auto" (default), "no_change"]
|
||||
need_header_footer_analysis: remove headers and footers from the output
|
||||
result for parsing PDF and images
|
||||
need_binarization: clean pages background (binarize) for PDF without a
|
||||
textual layer and images
|
||||
need_pdf_table_analysis: parse tables for PDF without a textual layer
|
||||
and images
|
||||
delimiter: column separator for CSV, TSV files
|
||||
encoding: encoding of TXT, CSV, TSV
|
||||
"""
|
||||
super().__init__(
|
||||
file_path=file_path,
|
||||
split=split,
|
||||
with_tables=with_tables,
|
||||
with_attachments=with_attachments,
|
||||
recursion_deep_attachments=recursion_deep_attachments,
|
||||
pdf_with_text_layer=pdf_with_text_layer,
|
||||
language=language,
|
||||
pages=pages,
|
||||
is_one_column_document=is_one_column_document,
|
||||
document_orientation=document_orientation,
|
||||
need_header_footer_analysis=need_header_footer_analysis,
|
||||
need_binarization=need_binarization,
|
||||
need_pdf_table_analysis=need_pdf_table_analysis,
|
||||
delimiter=delimiter,
|
||||
encoding=encoding,
|
||||
)
|
||||
self.url = url
|
||||
self.parsing_parameters["return_format"] = "json"
|
||||
|
||||
def lazy_load(self) -> Iterator[Document]:
|
||||
"""Lazily load documents."""
|
||||
doc_tree = self._send_file(
|
||||
url=self.url, file_path=self.file_path, parameters=self.parsing_parameters
|
||||
)
|
||||
yield from self._split_document(document_tree=doc_tree, split=self.split)
|
||||
|
||||
def _make_config(self) -> dict:
|
||||
return {}
|
||||
|
||||
def _send_file(
|
||||
self, url: str, file_path: str, parameters: dict
|
||||
) -> Dict[str, Union[list, dict, str]]:
|
||||
"""Send POST-request to `dedoc` API and return the results"""
|
||||
import requests
|
||||
|
||||
file_name = os.path.basename(file_path)
|
||||
with open(file_path, "rb") as file:
|
||||
files = {"file": (file_name, file)}
|
||||
r = requests.post(f"{url}/upload", files=files, data=parameters)
|
||||
|
||||
if r.status_code != 200:
|
||||
raise ValueError(f"Error during file handling: {r.content.decode()}")
|
||||
|
||||
result = json.loads(r.content.decode())
|
||||
return result
|
@ -26,6 +26,7 @@ from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
from langchain_community.document_loaders.base import BaseLoader
|
||||
from langchain_community.document_loaders.blob_loaders import Blob
|
||||
from langchain_community.document_loaders.dedoc import DedocBaseLoader
|
||||
from langchain_community.document_loaders.parsers.pdf import (
|
||||
AmazonTextractPDFParser,
|
||||
DocumentIntelligenceParser,
|
||||
@ -738,6 +739,104 @@ class AmazonTextractPDFLoader(BasePDFLoader):
|
||||
raise ValueError(f"unsupported mime type: {blob.mimetype}") # type: ignore[attr-defined]
|
||||
|
||||
|
||||
class DedocPDFLoader(DedocBaseLoader):
|
||||
"""
|
||||
DedocPDFLoader document loader integration to load PDF files using `dedoc`.
|
||||
The file loader can automatically detect the correctness of a textual layer in the
|
||||
PDF document.
|
||||
Note that `__init__` method supports parameters that differ from ones of
|
||||
DedocBaseLoader.
|
||||
|
||||
Setup:
|
||||
Install ``dedoc`` package.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U dedoc
|
||||
|
||||
Instantiate:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.document_loaders import DedocPDFLoader
|
||||
|
||||
loader = DedocPDFLoader(
|
||||
file_path="example.pdf",
|
||||
# split=...,
|
||||
# with_tables=...,
|
||||
# pdf_with_text_layer=...,
|
||||
# pages=...,
|
||||
# ...
|
||||
)
|
||||
|
||||
Load:
|
||||
.. code-block:: python
|
||||
|
||||
docs = loader.load()
|
||||
print(docs[0].page_content[:100])
|
||||
print(docs[0].metadata)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
Some text
|
||||
{
|
||||
'file_name': 'example.pdf',
|
||||
'file_type': 'application/pdf',
|
||||
# ...
|
||||
}
|
||||
|
||||
Lazy load:
|
||||
.. code-block:: python
|
||||
|
||||
docs = []
|
||||
docs_lazy = loader.lazy_load()
|
||||
|
||||
for doc in docs_lazy:
|
||||
docs.append(doc)
|
||||
print(docs[0].page_content[:100])
|
||||
print(docs[0].metadata)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
Some text
|
||||
{
|
||||
'file_name': 'example.pdf',
|
||||
'file_type': 'application/pdf',
|
||||
# ...
|
||||
}
|
||||
|
||||
Parameters used for document parsing via `dedoc`
|
||||
(https://dedoc.readthedocs.io/en/latest/parameters/pdf_handling.html):
|
||||
|
||||
with_attachments: enable attached files extraction
|
||||
recursion_deep_attachments: recursion level for attached files extraction,
|
||||
works only when with_attachments==True
|
||||
pdf_with_text_layer: type of handler for parsing, available options
|
||||
["true", "false", "tabby", "auto", "auto_tabby" (default)]
|
||||
language: language of the document for PDF without a textual layer,
|
||||
available options ["eng", "rus", "rus+eng" (default)], the list of
|
||||
languages can be extended, please see
|
||||
https://dedoc.readthedocs.io/en/latest/tutorials/add_new_language.html
|
||||
pages: page slice to define the reading range for parsing
|
||||
is_one_column_document: detect number of columns for PDF without a textual
|
||||
layer, available options ["true", "false", "auto" (default)]
|
||||
document_orientation: fix document orientation (90, 180, 270 degrees) for PDF
|
||||
without a textual layer, available options ["auto" (default), "no_change"]
|
||||
need_header_footer_analysis: remove headers and footers from the output result
|
||||
need_binarization: clean pages background (binarize) for PDF without a textual
|
||||
layer
|
||||
need_pdf_table_analysis: parse tables for PDF without a textual layer
|
||||
"""
|
||||
|
||||
def _make_config(self) -> dict:
|
||||
from dedoc.utils.langchain import make_manager_pdf_config
|
||||
|
||||
return make_manager_pdf_config(
|
||||
file_path=self.file_path,
|
||||
parsing_params=self.parsing_parameters,
|
||||
split=self.split,
|
||||
)
|
||||
|
||||
|
||||
class DocumentIntelligenceLoader(BasePDFLoader):
|
||||
"""Load a PDF with Azure Document Intelligence"""
|
||||
|
||||
|
@ -0,0 +1,146 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from langchain_community.document_loaders import (
|
||||
DedocAPIFileLoader,
|
||||
DedocFileLoader,
|
||||
DedocPDFLoader,
|
||||
)
|
||||
|
||||
EXAMPLE_DOCS_DIRECTORY = str(Path(__file__).parent.parent / "examples/")
|
||||
|
||||
FILE_NAMES = [
|
||||
"example.html",
|
||||
"example.json",
|
||||
"fake-email-attachment.eml",
|
||||
"layout-parser-paper.pdf",
|
||||
"slack_export.zip",
|
||||
"stanley-cups.csv",
|
||||
"stanley-cups.xlsx",
|
||||
"whatsapp_chat.txt",
|
||||
]
|
||||
|
||||
|
||||
def test_dedoc_file_loader() -> None:
|
||||
for file_name in FILE_NAMES:
|
||||
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
|
||||
loader = DedocFileLoader(
|
||||
file_path,
|
||||
split="document",
|
||||
with_tables=False,
|
||||
pdf_with_text_layer="tabby",
|
||||
pages=":1",
|
||||
)
|
||||
docs = loader.load()
|
||||
|
||||
assert len(docs) == 1
|
||||
|
||||
|
||||
def test_dedoc_pdf_loader() -> None:
|
||||
file_name = "layout-parser-paper.pdf"
|
||||
for mode in ("true", "tabby"):
|
||||
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
|
||||
loader = DedocPDFLoader(
|
||||
file_path,
|
||||
split="document",
|
||||
with_tables=False,
|
||||
pdf_with_text_layer=mode,
|
||||
pages=":1",
|
||||
)
|
||||
docs = loader.load()
|
||||
|
||||
assert len(docs) == 1
|
||||
|
||||
|
||||
def test_dedoc_content_html() -> None:
|
||||
file_name = "example.html"
|
||||
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
|
||||
loader = DedocFileLoader(
|
||||
file_path,
|
||||
split="line",
|
||||
with_tables=False,
|
||||
)
|
||||
docs = loader.load()
|
||||
|
||||
assert docs[0].metadata["file_name"] == "example.html"
|
||||
assert docs[0].metadata["file_type"] == "text/html"
|
||||
assert "Instead of drinking water from the cat bowl" in docs[0].page_content
|
||||
assert "Chase the red dot" not in docs[0].page_content
|
||||
|
||||
|
||||
def test_dedoc_content_pdf() -> None:
|
||||
file_name = "layout-parser-paper.pdf"
|
||||
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
|
||||
loader = DedocFileLoader(
|
||||
file_path, split="page", pdf_with_text_layer="tabby", pages=":5"
|
||||
)
|
||||
docs = loader.load()
|
||||
table_list = [item for item in docs if item.metadata.get("type", "") == "table"]
|
||||
|
||||
assert len(docs) == 6
|
||||
assert docs[0].metadata["file_name"] == "layout-parser-paper.pdf"
|
||||
assert docs[0].metadata["file_type"] == "application/pdf"
|
||||
assert "This paper introduces LayoutParser, an open-source" in docs[0].page_content
|
||||
assert "layout detection [38, 22], table detection [26]" in docs[1].page_content
|
||||
assert "LayoutParser: A Unified Toolkit for DL-Based DIA" in docs[2].page_content
|
||||
assert len(table_list) > 0
|
||||
assert (
|
||||
'\n<tbody>\n<tr>\n<td colspan="1" rowspan="1">'
|
||||
in table_list[0].metadata["text_as_html"]
|
||||
)
|
||||
|
||||
|
||||
def test_dedoc_content_json() -> None:
|
||||
file_name = "example.json"
|
||||
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
|
||||
loader = DedocFileLoader(file_path, split="node")
|
||||
docs = loader.load()
|
||||
|
||||
assert len(docs) == 11
|
||||
assert docs[0].metadata["file_name"] == "example.json"
|
||||
assert docs[0].metadata["file_type"] == "application/json"
|
||||
assert "Bye!" in docs[0].page_content
|
||||
|
||||
|
||||
def test_dedoc_content_txt() -> None:
|
||||
file_name = "whatsapp_chat.txt"
|
||||
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
|
||||
loader = DedocFileLoader(file_path, split="line")
|
||||
docs = loader.load()
|
||||
|
||||
assert len(docs) == 10
|
||||
assert docs[0].metadata["file_name"] == "whatsapp_chat.txt"
|
||||
assert docs[0].metadata["file_type"] == "text/plain"
|
||||
assert "[05.05.23, 15:48:11] James: Hi here" in docs[0].page_content
|
||||
assert "[11/8/21, 9:41:32 AM] User name: Message 123" in docs[1].page_content
|
||||
assert "1/23/23, 3:19 AM - User 2: Bye!" in docs[2].page_content
|
||||
|
||||
|
||||
def test_dedoc_table_handling() -> None:
|
||||
file_name = "stanley-cups.csv"
|
||||
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
|
||||
loader = DedocFileLoader(file_path, split="document")
|
||||
docs = loader.load()
|
||||
|
||||
assert len(docs) == 2
|
||||
assert docs[0].metadata["file_name"] == "stanley-cups.csv"
|
||||
assert docs[0].metadata["file_type"] == "text/csv"
|
||||
assert docs[1].metadata["type"] == "table"
|
||||
assert '<td colspan="1" rowspan="1">1</td>' in docs[1].metadata["text_as_html"]
|
||||
assert "Maple Leafs\tTOR\t13" in docs[1].page_content
|
||||
|
||||
|
||||
def test_dedoc_api_file_loader() -> None:
|
||||
file_name = "whatsapp_chat.txt"
|
||||
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
|
||||
loader = DedocAPIFileLoader(
|
||||
file_path, split="line", url="https://dedoc-readme.hf.space"
|
||||
)
|
||||
docs = loader.load()
|
||||
|
||||
assert len(docs) == 10
|
||||
assert docs[0].metadata["file_name"] == "whatsapp_chat.txt"
|
||||
assert docs[0].metadata["file_type"] == "text/plain"
|
||||
assert "[05.05.23, 15:48:11] James: Hi here" in docs[0].page_content
|
||||
assert "[11/8/21, 9:41:32 AM] User name: Message 123" in docs[1].page_content
|
||||
assert "1/23/23, 3:19 AM - User 2: Bye!" in docs[2].page_content
|
@ -51,6 +51,9 @@ EXPECTED_ALL = [
|
||||
"CubeSemanticLoader",
|
||||
"DataFrameLoader",
|
||||
"DatadogLogsLoader",
|
||||
"DedocAPIFileLoader",
|
||||
"DedocFileLoader",
|
||||
"DedocPDFLoader",
|
||||
"PebbloSafeLoader",
|
||||
"DiffbotLoader",
|
||||
"DirectoryLoader",
|
||||
|
Loading…
Reference in New Issue
Block a user