community[minor]: added new document loaders based on dedoc library (#24303)

### Description
This pull request added new document loaders to load documents of
various formats using [Dedoc](https://github.com/ispras/dedoc):
  - `DedocFileLoader` (determine file types automatically and parse)
  - `DedocPDFLoader` (for `PDF` and images parsing)
- `DedocAPIFileLoader` (determine file types automatically and parse
using Dedoc API without library installation)

[Dedoc](https://dedoc.readthedocs.io) is an open-source library/service
that extracts texts, tables, attached files and document structure
(e.g., titles, list items, etc.) from files of various formats. The
library is actively developed and maintained by a group of developers.

`Dedoc` supports `DOCX`, `XLSX`, `PPTX`, `EML`, `HTML`, `PDF`, images
and more.
Full list of supported formats can be found
[here](https://dedoc.readthedocs.io/en/latest/#id1).
For `PDF` documents, `Dedoc` allows to determine textual layer
correctness and split the document into paragraphs.


### Issue
This pull request extends variety of document loaders supported by
`langchain_community` allowing users to choose the most suitable option
for raw documents parsing.

### Dependencies
The PR added a new (optional) dependency `dedoc>=2.2.5` ([library
documentation](https://dedoc.readthedocs.io)) to the
`extended_testing_deps.txt`

### Twitter handle
None

### Add tests and docs
1. Test for the integration:
`libs/community/tests/integration_tests/document_loaders/test_dedoc.py`
2. Example notebook:
`docs/docs/integrations/document_loaders/dedoc.ipynb`
3. Information about the library:
`docs/docs/integrations/providers/dedoc.mdx`

### Lint and test

Done locally:

  - `make format`
  - `make lint`
  - `make integration_tests`
  - `make docs_build` (from the project root)

---------

Co-authored-by: Nasty <bogatenkova.anastasiya@mail.ru>
This commit is contained in:
Alexander Golodkov 2024-07-23 05:04:53 +03:00 committed by GitHub
parent 5ac936a284
commit 2a70a07aad
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 1346 additions and 0 deletions

View File

@ -0,0 +1,484 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "6b74f73d-1763-42d0-9c24-8f65f445bb72",
"metadata": {},
"source": [
"# Dedoc\n",
"\n",
"This sample demonstrates the use of `Dedoc` in combination with `LangChain` as a `DocumentLoader`.\n",
"\n",
"## Overview\n",
"\n",
"[Dedoc](https://dedoc.readthedocs.io) is an [open-source](https://github.com/ispras/dedoc)\n",
"library/service that extracts texts, tables, attached files and document structure\n",
"(e.g., titles, list items, etc.) from files of various formats.\n",
"\n",
"`Dedoc` supports `DOCX`, `XLSX`, `PPTX`, `EML`, `HTML`, `PDF`, images and more.\n",
"Full list of supported formats can be found [here](https://dedoc.readthedocs.io/en/latest/#id1).\n",
"\n",
"\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | JS support |\n",
"|:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----:|:------------:|:----------:|\n",
"| [DedocFileLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.dedoc.DedocFileLoader.html) | [langchain_community](https://api.python.langchain.com/en/latest/community_api_reference.html) | ❌ | beta | ❌ |\n",
"| [DedocPDFLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.DedocPDFLoader.html) | [langchain_community](https://api.python.langchain.com/en/latest/community_api_reference.html) | ❌ | beta | ❌ | \n",
"| [DedocAPIFileLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.dedoc.DedocAPIFileLoader.html) | [langchain_community](https://api.python.langchain.com/en/latest/community_api_reference.html) | ❌ | beta | ❌ | \n",
"\n",
"\n",
"### Loader features\n",
"\n",
"Methods for lazy loading and async loading are available, but in fact, document loading is executed synchronously.\n",
"\n",
"| Source | Document Lazy Loading | Async Support |\n",
"|:------------------:|:---------------------:|:-------------:| \n",
"| DedocFileLoader | ❌ | ❌ |\n",
"| DedocPDFLoader | ❌ | ❌ | \n",
"| DedocAPIFileLoader | ❌ | ❌ | \n",
"\n",
"## Setup\n",
"\n",
"* To access `DedocFileLoader` and `DedocPDFLoader` document loaders, you'll need to install the `dedoc` integration package.\n",
"* To access `DedocAPIFileLoader`, you'll need to run the `Dedoc` service, e.g. `Docker` container (please see [the documentation](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html#install-and-run-dedoc-using-docker) \n",
"for more details):\n",
"\n",
"```bash\n",
"docker pull dedocproject/dedoc\n",
"docker run -p 1231:1231\n",
"```\n",
"\n",
"`Dedoc` installation instruction is given [here](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "511c109d-a5c3-42ba-914e-5d1b385bc40f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"# Install package\n",
"%pip install --quiet \"dedoc[torch]\""
]
},
{
"cell_type": "markdown",
"id": "6820c0e9-d56d-4899-b8c8-374760360e2b",
"metadata": {},
"source": [
"## Instantiation"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c1f98cae-71ec-4d60-87fb-96c1a76851d8",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import DedocFileLoader\n",
"\n",
"loader = DedocFileLoader(\"./example_data/state_of_the_union.txt\")"
]
},
{
"cell_type": "markdown",
"id": "5d7bc2b3-73a0-4cd6-8014-cc7184aa9d4a",
"metadata": {},
"source": [
"## Load"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b9097c14-6168-4726-819e-24abb9a63b13",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nMadam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and t'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs = loader.load()\n",
"docs[0].page_content[:100]"
]
},
{
"cell_type": "markdown",
"id": "9ed8bd46-0047-4ccc-b2d6-beb7761f7312",
"metadata": {},
"source": [
"## Lazy Load"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6ae12d7e-8105-4bbe-9031-0e968475f6bf",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and t\n"
]
}
],
"source": [
"docs = loader.lazy_load()\n",
"\n",
"for doc in docs:\n",
" print(doc.page_content[:100])\n",
" break"
]
},
{
"cell_type": "markdown",
"id": "8772ae40-6239-4751-bb2d-b4a9415c1ad1",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed information on configuring and calling `Dedoc` loaders, please see the API references: \n",
"\n",
"* https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.dedoc.DedocFileLoader.html\n",
"* https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.DedocPDFLoader.html\n",
"* https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.dedoc.DedocAPIFileLoader.html"
]
},
{
"cell_type": "markdown",
"id": "c4d5e702-0e21-4cad-a4c3-b9b3bff77203",
"metadata": {},
"source": [
"## Loading any file\n",
"\n",
"For automatic handling of any file in a [supported format](https://dedoc.readthedocs.io/en/latest/#id1),\n",
"`DedocFileLoader` can be useful.\n",
"The file loader automatically detects the file type with a correct extension.\n",
"\n",
"File parsing process can be configured through `dedoc_kwargs` during the `DedocFileLoader` class initialization.\n",
"Here the basic examples of some options usage are given, \n",
"please see the documentation of `DedocFileLoader` and \n",
"[dedoc documentation](https://dedoc.readthedocs.io/en/latest/parameters/parameters.html) \n",
"to get more details about configuration parameters."
]
},
{
"cell_type": "markdown",
"id": "de97d0ed-d6b1-44e0-b392-1f3d89c762f9",
"metadata": {},
"source": [
"### Basic example"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "50ffeeee-db12-4801-b208-7e32ea3d72ad",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nMadam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \\n\\n\\n\\nLast year COVID-19 kept us apart. This year we are finally together again. \\n\\n\\n\\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \\n\\n\\n\\nWith a duty to one another to the American people to '"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import DedocFileLoader\n",
"\n",
"loader = DedocFileLoader(\"./example_data/state_of_the_union.txt\")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[0].page_content[:400]"
]
},
{
"cell_type": "markdown",
"id": "457e5d4c-a4ee-4f31-ae74-3f75a1bbd0af",
"metadata": {},
"source": [
"### Modes of split\n",
"\n",
"`DedocFileLoader` supports different types of document splitting into parts (each part is returned separately).\n",
"For this purpose, `split` parameter is used with the following options:\n",
"* `document` (default value): document text is returned as a single langchain `Document` object (don't split);\n",
"* `page`: split document text into pages (works for `PDF`, `DJVU`, `PPTX`, `PPT`, `ODP`);\n",
"* `node`: split document text into `Dedoc` tree nodes (title nodes, list item nodes, raw text nodes);\n",
"* `line`: split document text into textual lines."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "eec54d31-ae7a-4a3c-aa10-4ae276b1e4c4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader = DedocFileLoader(\n",
" \"./example_data/layout-parser-paper.pdf\",\n",
" split=\"page\",\n",
" pages=\":2\",\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"len(docs)"
]
},
{
"cell_type": "markdown",
"id": "61e11769-4780-4f77-b10e-27db6936f226",
"metadata": {},
"source": [
"### Handling tables\n",
"\n",
"`DedocFileLoader` supports tables handling when `with_tables` parameter is \n",
"set to `True` during loader initialization (`with_tables=True` by default). \n",
"\n",
"Tables are not split - each table corresponds to one langchain `Document` object.\n",
"For tables, `Document` object has additional `metadata` fields `type=\"table\"` \n",
"and `text_as_html` with table `HTML` representation."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "bbeb2f8a-ac5e-4b59-8026-7ea3fc14c928",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"('table',\n",
" '<table border=\"1\" style=\"border-collapse: collapse; width: 100%;\">\\n<tbody>\\n<tr>\\n<td colspan=\"1\" rowspan=\"1\">Team</td>\\n<td colspan=\"1\" rowspan=\"1\"> &quot;Payroll (millions)&quot;</td>\\n<td colspan=\"1\" r')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader = DedocFileLoader(\"./example_data/mlb_teams_2012.csv\")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[1].metadata[\"type\"], docs[1].metadata[\"text_as_html\"][:200]"
]
},
{
"cell_type": "markdown",
"id": "b4a2b872-2aba-4e4c-8b2f-83a5a81ee1da",
"metadata": {},
"source": [
"### Handling attached files\n",
"\n",
"`DedocFileLoader` supports attached files handling when `with_attachments` is set \n",
"to `True` during loader initialization (`with_attachments=False` by default). \n",
"\n",
"Attachments are split according to the `split` parameter.\n",
"For attachments, langchain `Document` object has an additional metadata \n",
"field `type=\"attachment\"`."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "bb9d6c1c-e24c-4979-88a0-38d54abd6332",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"('attachment',\n",
" '\\nContent-Type\\nmultipart/mixed; boundary=\"0000000000005d654405f082adb7\"\\nDate\\nFri, 23 Dec 2022 12:08:48 -0600\\nFrom\\nMallori Harrell <mallori@unstructured.io>\\nMIME-Version\\n1.0\\nMessage-ID\\n<CAPgNNXSzLVJ-d1OCX_TjFgJU7ugtQrjFybPtAMmmYZzphxNFYg@mail.gmail.com>\\nSubject\\nFake email with attachment\\nTo\\nMallori Harrell <mallori@unstructured.io>')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader = DedocFileLoader(\n",
" \"./example_data/fake-email-attachment.eml\",\n",
" with_attachments=True,\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[1].metadata[\"type\"], docs[1].page_content"
]
},
{
"cell_type": "markdown",
"id": "d435c3f6-703a-4064-8307-ace140de967a",
"metadata": {},
"source": [
"## Loading PDF file\n",
"\n",
"If you want to handle only `PDF` documents, you can use `DedocPDFLoader` with only `PDF` support.\n",
"The loader supports the same parameters for document split, tables and attachments extraction.\n",
"\n",
"`Dedoc` can extract `PDF` with or without a textual layer, \n",
"as well as automatically detect its presence and correctness.\n",
"Several `PDF` handlers are available, you can use `pdf_with_text_layer` \n",
"parameter to choose one of them.\n",
"Please see [parameters description](https://dedoc.readthedocs.io/en/latest/parameters/pdf_handling.html) \n",
"to get more details.\n",
"\n",
"For `PDF` without a textual layer, `Tesseract OCR` and its language packages should be installed.\n",
"In this case, [the instruction](https://dedoc.readthedocs.io/en/latest/tutorials/add_new_language.html) can be useful."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0103a7f3-6b5e-4444-8f4d-83dd3724a9af",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\n2\\n\\nZ. Shen et al.\\n\\n37], layout detection [38, 22], table detection [26], and scene text detection [4].\\n\\nA generalized learning-based framework dramatically reduces the need for the\\n\\nmanual specification of complicated rules, which is the status quo with traditional\\n\\nmethods. DL has the potential to transform DIA pipelines and benefit a broad\\n\\nspectrum of large-scale document digitization projects.\\n'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import DedocPDFLoader\n",
"\n",
"loader = DedocPDFLoader(\n",
" \"./example_data/layout-parser-paper.pdf\", pdf_with_text_layer=\"true\", pages=\"2:2\"\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[0].page_content[:400]"
]
},
{
"cell_type": "markdown",
"id": "13061995-1805-40c2-a77a-a6cd80999e20",
"metadata": {},
"source": [
"## Dedoc API\n",
"\n",
"If you want to get up and running with less set up, you can use `Dedoc` as a service.\n",
"**`DedocAPIFileLoader` can be used without installation of `dedoc` library.**\n",
"The loader supports the same parameters as `DedocFileLoader` and\n",
"also automatically detects input file types.\n",
"\n",
"To use `DedocAPIFileLoader`, you should run the `Dedoc` service, e.g. `Docker` container (please see [the documentation](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html#install-and-run-dedoc-using-docker) \n",
"for more details):\n",
"\n",
"```bash\n",
"docker pull dedocproject/dedoc\n",
"docker run -p 1231:1231\n",
"```\n",
"\n",
"Please do not use our demo URL `https://dedoc-readme.hf.space` in your code."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "211fc0b5-6080-4974-a6c1-f982bafd87d6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nMadam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \\n\\n\\n\\nLast year COVID-19 kept us apart. This year we are finally together again. \\n\\n\\n\\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \\n\\n\\n\\nWith a duty to one another to the American people to '"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import DedocAPIFileLoader\n",
"\n",
"loader = DedocAPIFileLoader(\n",
" \"./example_data/state_of_the_union.txt\",\n",
" url=\"https://dedoc-readme.hf.space\",\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[0].page_content[:400]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "faaff475-5209-436f-bcde-97d58daed05c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.19"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,56 @@
# Dedoc
>[Dedoc](https://dedoc.readthedocs.io) is an [open-source](https://github.com/ispras/dedoc)
library/service that extracts texts, tables, attached files and document structure
(e.g., titles, list items, etc.) from files of various formats.
`Dedoc` supports `DOCX`, `XLSX`, `PPTX`, `EML`, `HTML`, `PDF`, images and more.
Full list of supported formats can be found [here](https://dedoc.readthedocs.io/en/latest/#id1).
## Installation and Setup
### Dedoc library
You can install `Dedoc` using `pip`.
In this case, you will need to install dependencies,
please go [here](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html)
to get more information.
```bash
pip install dedoc
```
### Dedoc API
If you are going to use `Dedoc` API, you don't need to install `dedoc` library.
In this case, you should run the `Dedoc` service, e.g. `Docker` container (please see
[the documentation](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html#install-and-run-dedoc-using-docker)
for more details):
```bash
docker pull dedocproject/dedoc
docker run -p 1231:1231
```
## Document Loader
* For handling files of any formats (supported by `Dedoc`), you can use `DedocFileLoader`:
```python
from langchain_community.document_loaders import DedocFileLoader
```
* For handling PDF files (with or without a textual layer), you can use `DedocPDFLoader`:
```python
from langchain_community.document_loaders import DedocPDFLoader
```
* For handling files of any formats without library installation,
you can use `Dedoc API` with `DedocAPIFileLoader`:
```python
from langchain_community.document_loaders import DedocAPIFileLoader
```
Please see a [usage example](/docs/integrations/document_loaders/dedoc) for more details.

View File

@ -16,6 +16,7 @@ cloudpickle>=2.0.0
cohere>=4,<6
databricks-vectorsearch>=0.21,<0.22
datasets>=2.15.0,<3
dedoc>=2.2.6,<3
dgml-utils>=0.3.0,<0.4
elasticsearch>=8.12.0,<9
esprima>=4.0.1,<5

View File

@ -142,6 +142,10 @@ if TYPE_CHECKING:
from langchain_community.document_loaders.dataframe import (
DataFrameLoader,
)
from langchain_community.document_loaders.dedoc import (
DedocAPIFileLoader,
DedocFileLoader,
)
from langchain_community.document_loaders.diffbot import (
DiffbotLoader,
)
@ -340,6 +344,7 @@ if TYPE_CHECKING:
)
from langchain_community.document_loaders.pdf import (
AmazonTextractPDFLoader,
DedocPDFLoader,
MathpixPDFLoader,
OnlinePDFLoader,
PagedPDFSplitter,
@ -570,6 +575,9 @@ _module_lookup = {
"CubeSemanticLoader": "langchain_community.document_loaders.cube_semantic",
"DataFrameLoader": "langchain_community.document_loaders.dataframe",
"DatadogLogsLoader": "langchain_community.document_loaders.datadog_logs",
"DedocAPIFileLoader": "langchain_community.document_loaders.dedoc",
"DedocFileLoader": "langchain_community.document_loaders.dedoc",
"DedocPDFLoader": "langchain_community.document_loaders.pdf",
"DiffbotLoader": "langchain_community.document_loaders.diffbot",
"DirectoryLoader": "langchain_community.document_loaders.directory",
"DiscordChatLoader": "langchain_community.document_loaders.discord",
@ -771,6 +779,9 @@ __all__ = [
"CubeSemanticLoader",
"DataFrameLoader",
"DatadogLogsLoader",
"DedocAPIFileLoader",
"DedocFileLoader",
"DedocPDFLoader",
"DiffbotLoader",
"DirectoryLoader",
"DiscordChatLoader",

View File

@ -0,0 +1,546 @@
import html
import json
import os
from abc import ABC, abstractmethod
from typing import (
Dict,
Iterator,
Optional,
Tuple,
Union,
)
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseLoader
class DedocBaseLoader(BaseLoader, ABC):
"""
Base Loader that uses `dedoc` (https://dedoc.readthedocs.io).
Loader enables extracting text, tables and attached files from the given file:
* `Text` can be split by pages, `dedoc` tree nodes, textual lines
(according to the `split` parameter).
* `Attached files` (when with_attachments=True)
are split according to the `split` parameter.
For attachments, langchain Document object has an additional metadata field
`type`="attachment".
* `Tables` (when with_tables=True) are not split - each table corresponds to one
langchain Document object.
For tables, Document object has additional metadata fields `type`="table"
and `text_as_html` with table HTML representation.
"""
def __init__(
self,
file_path: str,
*,
split: str = "document",
with_tables: bool = True,
with_attachments: Union[str, bool] = False,
recursion_deep_attachments: int = 10,
pdf_with_text_layer: str = "auto_tabby",
language: str = "rus+eng",
pages: str = ":",
is_one_column_document: str = "auto",
document_orientation: str = "auto",
need_header_footer_analysis: Union[str, bool] = False,
need_binarization: Union[str, bool] = False,
need_pdf_table_analysis: Union[str, bool] = True,
delimiter: Optional[str] = None,
encoding: Optional[str] = None,
) -> None:
"""
Initialize with file path and parsing parameters.
Args:
file_path: path to the file for processing
split: type of document splitting into parts (each part is returned
separately), default value "document"
"document": document text is returned as a single langchain Document
object (don't split)
"page": split document text into pages (works for PDF, DJVU, PPTX, PPT,
ODP)
"node": split document text into tree nodes (title nodes, list item
nodes, raw text nodes)
"line": split document text into lines
with_tables: add tables to the result - each table is returned as a single
langchain Document object
Parameters used for document parsing via `dedoc`
(https://dedoc.readthedocs.io/en/latest/parameters/parameters.html):
with_attachments: enable attached files extraction
recursion_deep_attachments: recursion level for attached files
extraction, works only when with_attachments==True
pdf_with_text_layer: type of handler for parsing PDF documents,
available options
["true", "false", "tabby", "auto", "auto_tabby" (default)]
language: language of the document for PDF without a textual layer and
images, available options ["eng", "rus", "rus+eng" (default)],
the list of languages can be extended, please see
https://dedoc.readthedocs.io/en/latest/tutorials/add_new_language.html
pages: page slice to define the reading range for parsing PDF documents
is_one_column_document: detect number of columns for PDF without
a textual layer and images, available options
["true", "false", "auto" (default)]
document_orientation: fix document orientation (90, 180, 270 degrees)
for PDF without a textual layer and images, available options
["auto" (default), "no_change"]
need_header_footer_analysis: remove headers and footers from the output
result for parsing PDF and images
need_binarization: clean pages background (binarize) for PDF without a
textual layer and images
need_pdf_table_analysis: parse tables for PDF without a textual layer
and images
delimiter: column separator for CSV, TSV files
encoding: encoding of TXT, CSV, TSV
"""
self.parsing_parameters = {
key: value
for key, value in locals().items()
if key not in {"self", "file_path", "split", "with_tables"}
}
self.valid_split_values = {"document", "page", "node", "line"}
if split not in self.valid_split_values:
raise ValueError(
f"Got {split} for `split`, but should be one of "
f"`{self.valid_split_values}`"
)
self.split = split
self.with_tables = with_tables
self.file_path = file_path
structure_type = "tree" if self.split == "node" else "linear"
self.parsing_parameters["structure_type"] = structure_type
self.parsing_parameters["need_content_analysis"] = with_attachments
def lazy_load(self) -> Iterator[Document]:
"""Lazily load documents."""
import tempfile
try:
from dedoc import DedocManager
except ImportError:
raise ImportError(
"`dedoc` package not found, please install it with `pip install dedoc`"
)
dedoc_manager = DedocManager(manager_config=self._make_config())
dedoc_manager.config["logger"].disabled = True
with tempfile.TemporaryDirectory() as tmpdir:
document_tree = dedoc_manager.parse(
file_path=self.file_path,
parameters={**self.parsing_parameters, "attachments_dir": tmpdir},
)
yield from self._split_document(
document_tree=document_tree.to_api_schema().dict(), split=self.split
)
@abstractmethod
def _make_config(self) -> dict:
"""
Make configuration for DedocManager according to the file extension and
parsing parameters.
"""
pass
def _json2txt(self, paragraph: dict) -> str:
"""Get text (recursively) of the document tree node."""
subparagraphs_text = "\n".join(
[
self._json2txt(subparagraph)
for subparagraph in paragraph["subparagraphs"]
]
)
text = (
f"{paragraph['text']}\n{subparagraphs_text}"
if subparagraphs_text
else paragraph["text"]
)
return text
def _parse_subparagraphs(
self, document_tree: dict, document_metadata: dict
) -> Iterator[Document]:
"""Parse recursively document tree obtained by `dedoc`."""
if len(document_tree["subparagraphs"]) > 0:
for subparagraph in document_tree["subparagraphs"]:
yield from self._parse_subparagraphs(
document_tree=subparagraph, document_metadata=document_metadata
)
else:
yield Document(
page_content=document_tree["text"],
metadata={**document_metadata, **document_tree["metadata"]},
)
def _split_document(
self,
document_tree: dict,
split: str,
additional_metadata: Optional[dict] = None,
) -> Iterator[Document]:
"""Split document into parts according to the `split` parameter."""
document_metadata = document_tree["metadata"]
if additional_metadata:
document_metadata = {**document_metadata, **additional_metadata}
if split == "document":
text = self._json2txt(paragraph=document_tree["content"]["structure"])
yield Document(page_content=text, metadata=document_metadata)
elif split == "page":
nodes = document_tree["content"]["structure"]["subparagraphs"]
page_id = nodes[0]["metadata"]["page_id"]
page_text = ""
for node in nodes:
if node["metadata"]["page_id"] == page_id:
page_text += self._json2txt(node)
else:
yield Document(
page_content=page_text,
metadata={**document_metadata, "page_id": page_id},
)
page_id = node["metadata"]["page_id"]
page_text = self._json2txt(node)
yield Document(
page_content=page_text,
metadata={**document_metadata, "page_id": page_id},
)
elif split == "line":
for node in document_tree["content"]["structure"]["subparagraphs"]:
line_metadata = node["metadata"]
yield Document(
page_content=self._json2txt(node),
metadata={**document_metadata, **line_metadata},
)
elif split == "node":
yield from self._parse_subparagraphs(
document_tree=document_tree["content"]["structure"],
document_metadata=document_metadata,
)
else:
raise ValueError(
f"Got {split} for `split`, but should be one of "
f"`{self.valid_split_values}`"
)
if self.with_tables:
for table in document_tree["content"]["tables"]:
table_text, table_html = self._get_table(table)
yield Document(
page_content=table_text,
metadata={
**table["metadata"],
"type": "table",
"text_as_html": table_html,
},
)
for attachment in document_tree["attachments"]:
yield from self._split_document(
document_tree=attachment,
split=self.split,
additional_metadata={"type": "attachment"},
)
def _get_table(self, table: dict) -> Tuple[str, str]:
"""Get text and HTML representation of the table."""
table_text = ""
for row in table["cells"]:
for cell in row:
table_text += " ".join(line["text"] for line in cell["lines"])
table_text += "\t"
table_text += "\n"
table_html = (
'<table border="1" style="border-collapse: collapse; width: 100%;'
'">\n<tbody>\n'
)
for row in table["cells"]:
table_html += "<tr>\n"
for cell in row:
cell_text = "\n".join(line["text"] for line in cell["lines"])
cell_text = html.escape(cell_text)
table_html += "<td"
if cell["invisible"]:
table_html += ' style="display: none" '
table_html += (
f' colspan="{cell["colspan"]}" rowspan='
f'"{cell["rowspan"]}">{cell_text}</td>\n'
)
table_html += "</tr>\n"
table_html += "</tbody>\n</table>"
return table_text, table_html
class DedocFileLoader(DedocBaseLoader):
"""
DedocFileLoader document loader integration to load files using `dedoc`.
The file loader automatically detects the file type (with the correct extension).
The list of supported file types is gives at
https://dedoc.readthedocs.io/en/latest/index.html#id1.
Please see the documentation of DedocBaseLoader to get more details.
Setup:
Install ``dedoc`` package.
.. code-block:: bash
pip install -U dedoc
Instantiate:
.. code-block:: python
from langchain_community.document_loaders import DedocFileLoader
loader = DedocFileLoader(
file_path="example.pdf",
# split=...,
# with_tables=...,
# pdf_with_text_layer=...,
# pages=...,
# ...
)
Load:
.. code-block:: python
docs = loader.load()
print(docs[0].page_content[:100])
print(docs[0].metadata)
.. code-block:: python
Some text
{
'file_name': 'example.pdf',
'file_type': 'application/pdf',
# ...
}
Lazy load:
.. code-block:: python
docs = []
docs_lazy = loader.lazy_load()
for doc in docs_lazy:
docs.append(doc)
print(docs[0].page_content[:100])
print(docs[0].metadata)
.. code-block:: python
Some text
{
'file_name': 'example.pdf',
'file_type': 'application/pdf',
# ...
}
"""
def _make_config(self) -> dict:
from dedoc.utils.langchain import make_manager_config
return make_manager_config(
file_path=self.file_path,
parsing_params=self.parsing_parameters,
split=self.split,
)
class DedocAPIFileLoader(DedocBaseLoader):
"""
Load files using `dedoc` API.
The file loader automatically detects the file type (even with the wrong extension).
By default, the loader makes a call to the locally hosted `dedoc` API.
More information about `dedoc` API can be found in `dedoc` documentation:
https://dedoc.readthedocs.io/en/latest/dedoc_api_usage/api.html
Please see the documentation of DedocBaseLoader to get more details.
Setup:
You don't need to install `dedoc` library for using this loader.
Instead, the `dedoc` API needs to be run.
You may use Docker container for this purpose.
Please see `dedoc` documentation for more details:
https://dedoc.readthedocs.io/en/latest/getting_started/installation.html#install-and-run-dedoc-using-docker
.. code-block:: bash
docker pull dedocproject/dedoc
docker run -p 1231:1231
Instantiate:
.. code-block:: python
from langchain_community.document_loaders import DedocAPIFileLoader
loader = DedocAPIFileLoader(
file_path="example.pdf",
# url=...,
# split=...,
# with_tables=...,
# pdf_with_text_layer=...,
# pages=...,
# ...
)
Load:
.. code-block:: python
docs = loader.load()
print(docs[0].page_content[:100])
print(docs[0].metadata)
.. code-block:: python
Some text
{
'file_name': 'example.pdf',
'file_type': 'application/pdf',
# ...
}
Lazy load:
.. code-block:: python
docs = []
docs_lazy = loader.lazy_load()
for doc in docs_lazy:
docs.append(doc)
print(docs[0].page_content[:100])
print(docs[0].metadata)
.. code-block:: python
Some text
{
'file_name': 'example.pdf',
'file_type': 'application/pdf',
# ...
}
"""
def __init__(
self,
file_path: str,
*,
url: str = "http://0.0.0.0:1231",
split: str = "document",
with_tables: bool = True,
with_attachments: Union[str, bool] = False,
recursion_deep_attachments: int = 10,
pdf_with_text_layer: str = "auto_tabby",
language: str = "rus+eng",
pages: str = ":",
is_one_column_document: str = "auto",
document_orientation: str = "auto",
need_header_footer_analysis: Union[str, bool] = False,
need_binarization: Union[str, bool] = False,
need_pdf_table_analysis: Union[str, bool] = True,
delimiter: Optional[str] = None,
encoding: Optional[str] = None,
) -> None:
"""Initialize with file path, API url and parsing parameters.
Args:
file_path: path to the file for processing
url: URL to call `dedoc` API
split: type of document splitting into parts (each part is returned
separately), default value "document"
"document": document is returned as a single langchain Document object
(don't split)
"page": split document into pages (works for PDF, DJVU, PPTX, PPT, ODP)
"node": split document into tree nodes (title nodes, list item nodes,
raw text nodes)
"line": split document into lines
with_tables: add tables to the result - each table is returned as a single
langchain Document object
Parameters used for document parsing via `dedoc`
(https://dedoc.readthedocs.io/en/latest/parameters/parameters.html):
with_attachments: enable attached files extraction
recursion_deep_attachments: recursion level for attached files
extraction, works only when with_attachments==True
pdf_with_text_layer: type of handler for parsing PDF documents,
available options
["true", "false", "tabby", "auto", "auto_tabby" (default)]
language: language of the document for PDF without a textual layer and
images, available options ["eng", "rus", "rus+eng" (default)],
the list of languages can be extended, please see
https://dedoc.readthedocs.io/en/latest/tutorials/add_new_language.html
pages: page slice to define the reading range for parsing PDF documents
is_one_column_document: detect number of columns for PDF without
a textual layer and images, available options
["true", "false", "auto" (default)]
document_orientation: fix document orientation (90, 180, 270 degrees)
for PDF without a textual layer and images, available options
["auto" (default), "no_change"]
need_header_footer_analysis: remove headers and footers from the output
result for parsing PDF and images
need_binarization: clean pages background (binarize) for PDF without a
textual layer and images
need_pdf_table_analysis: parse tables for PDF without a textual layer
and images
delimiter: column separator for CSV, TSV files
encoding: encoding of TXT, CSV, TSV
"""
super().__init__(
file_path=file_path,
split=split,
with_tables=with_tables,
with_attachments=with_attachments,
recursion_deep_attachments=recursion_deep_attachments,
pdf_with_text_layer=pdf_with_text_layer,
language=language,
pages=pages,
is_one_column_document=is_one_column_document,
document_orientation=document_orientation,
need_header_footer_analysis=need_header_footer_analysis,
need_binarization=need_binarization,
need_pdf_table_analysis=need_pdf_table_analysis,
delimiter=delimiter,
encoding=encoding,
)
self.url = url
self.parsing_parameters["return_format"] = "json"
def lazy_load(self) -> Iterator[Document]:
"""Lazily load documents."""
doc_tree = self._send_file(
url=self.url, file_path=self.file_path, parameters=self.parsing_parameters
)
yield from self._split_document(document_tree=doc_tree, split=self.split)
def _make_config(self) -> dict:
return {}
def _send_file(
self, url: str, file_path: str, parameters: dict
) -> Dict[str, Union[list, dict, str]]:
"""Send POST-request to `dedoc` API and return the results"""
import requests
file_name = os.path.basename(file_path)
with open(file_path, "rb") as file:
files = {"file": (file_name, file)}
r = requests.post(f"{url}/upload", files=files, data=parameters)
if r.status_code != 200:
raise ValueError(f"Error during file handling: {r.content.decode()}")
result = json.loads(r.content.decode())
return result

View File

@ -26,6 +26,7 @@ from langchain_core.utils import get_from_dict_or_env
from langchain_community.document_loaders.base import BaseLoader
from langchain_community.document_loaders.blob_loaders import Blob
from langchain_community.document_loaders.dedoc import DedocBaseLoader
from langchain_community.document_loaders.parsers.pdf import (
AmazonTextractPDFParser,
DocumentIntelligenceParser,
@ -738,6 +739,104 @@ class AmazonTextractPDFLoader(BasePDFLoader):
raise ValueError(f"unsupported mime type: {blob.mimetype}") # type: ignore[attr-defined]
class DedocPDFLoader(DedocBaseLoader):
"""
DedocPDFLoader document loader integration to load PDF files using `dedoc`.
The file loader can automatically detect the correctness of a textual layer in the
PDF document.
Note that `__init__` method supports parameters that differ from ones of
DedocBaseLoader.
Setup:
Install ``dedoc`` package.
.. code-block:: bash
pip install -U dedoc
Instantiate:
.. code-block:: python
from langchain_community.document_loaders import DedocPDFLoader
loader = DedocPDFLoader(
file_path="example.pdf",
# split=...,
# with_tables=...,
# pdf_with_text_layer=...,
# pages=...,
# ...
)
Load:
.. code-block:: python
docs = loader.load()
print(docs[0].page_content[:100])
print(docs[0].metadata)
.. code-block:: python
Some text
{
'file_name': 'example.pdf',
'file_type': 'application/pdf',
# ...
}
Lazy load:
.. code-block:: python
docs = []
docs_lazy = loader.lazy_load()
for doc in docs_lazy:
docs.append(doc)
print(docs[0].page_content[:100])
print(docs[0].metadata)
.. code-block:: python
Some text
{
'file_name': 'example.pdf',
'file_type': 'application/pdf',
# ...
}
Parameters used for document parsing via `dedoc`
(https://dedoc.readthedocs.io/en/latest/parameters/pdf_handling.html):
with_attachments: enable attached files extraction
recursion_deep_attachments: recursion level for attached files extraction,
works only when with_attachments==True
pdf_with_text_layer: type of handler for parsing, available options
["true", "false", "tabby", "auto", "auto_tabby" (default)]
language: language of the document for PDF without a textual layer,
available options ["eng", "rus", "rus+eng" (default)], the list of
languages can be extended, please see
https://dedoc.readthedocs.io/en/latest/tutorials/add_new_language.html
pages: page slice to define the reading range for parsing
is_one_column_document: detect number of columns for PDF without a textual
layer, available options ["true", "false", "auto" (default)]
document_orientation: fix document orientation (90, 180, 270 degrees) for PDF
without a textual layer, available options ["auto" (default), "no_change"]
need_header_footer_analysis: remove headers and footers from the output result
need_binarization: clean pages background (binarize) for PDF without a textual
layer
need_pdf_table_analysis: parse tables for PDF without a textual layer
"""
def _make_config(self) -> dict:
from dedoc.utils.langchain import make_manager_pdf_config
return make_manager_pdf_config(
file_path=self.file_path,
parsing_params=self.parsing_parameters,
split=self.split,
)
class DocumentIntelligenceLoader(BasePDFLoader):
"""Load a PDF with Azure Document Intelligence"""

View File

@ -0,0 +1,146 @@
import os
from pathlib import Path
from langchain_community.document_loaders import (
DedocAPIFileLoader,
DedocFileLoader,
DedocPDFLoader,
)
EXAMPLE_DOCS_DIRECTORY = str(Path(__file__).parent.parent / "examples/")
FILE_NAMES = [
"example.html",
"example.json",
"fake-email-attachment.eml",
"layout-parser-paper.pdf",
"slack_export.zip",
"stanley-cups.csv",
"stanley-cups.xlsx",
"whatsapp_chat.txt",
]
def test_dedoc_file_loader() -> None:
for file_name in FILE_NAMES:
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
loader = DedocFileLoader(
file_path,
split="document",
with_tables=False,
pdf_with_text_layer="tabby",
pages=":1",
)
docs = loader.load()
assert len(docs) == 1
def test_dedoc_pdf_loader() -> None:
file_name = "layout-parser-paper.pdf"
for mode in ("true", "tabby"):
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
loader = DedocPDFLoader(
file_path,
split="document",
with_tables=False,
pdf_with_text_layer=mode,
pages=":1",
)
docs = loader.load()
assert len(docs) == 1
def test_dedoc_content_html() -> None:
file_name = "example.html"
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
loader = DedocFileLoader(
file_path,
split="line",
with_tables=False,
)
docs = loader.load()
assert docs[0].metadata["file_name"] == "example.html"
assert docs[0].metadata["file_type"] == "text/html"
assert "Instead of drinking water from the cat bowl" in docs[0].page_content
assert "Chase the red dot" not in docs[0].page_content
def test_dedoc_content_pdf() -> None:
file_name = "layout-parser-paper.pdf"
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
loader = DedocFileLoader(
file_path, split="page", pdf_with_text_layer="tabby", pages=":5"
)
docs = loader.load()
table_list = [item for item in docs if item.metadata.get("type", "") == "table"]
assert len(docs) == 6
assert docs[0].metadata["file_name"] == "layout-parser-paper.pdf"
assert docs[0].metadata["file_type"] == "application/pdf"
assert "This paper introduces LayoutParser, an open-source" in docs[0].page_content
assert "layout detection [38, 22], table detection [26]" in docs[1].page_content
assert "LayoutParser: A Unified Toolkit for DL-Based DIA" in docs[2].page_content
assert len(table_list) > 0
assert (
'\n<tbody>\n<tr>\n<td colspan="1" rowspan="1">'
in table_list[0].metadata["text_as_html"]
)
def test_dedoc_content_json() -> None:
file_name = "example.json"
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
loader = DedocFileLoader(file_path, split="node")
docs = loader.load()
assert len(docs) == 11
assert docs[0].metadata["file_name"] == "example.json"
assert docs[0].metadata["file_type"] == "application/json"
assert "Bye!" in docs[0].page_content
def test_dedoc_content_txt() -> None:
file_name = "whatsapp_chat.txt"
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
loader = DedocFileLoader(file_path, split="line")
docs = loader.load()
assert len(docs) == 10
assert docs[0].metadata["file_name"] == "whatsapp_chat.txt"
assert docs[0].metadata["file_type"] == "text/plain"
assert "[05.05.23, 15:48:11] James: Hi here" in docs[0].page_content
assert "[11/8/21, 9:41:32 AM] User name: Message 123" in docs[1].page_content
assert "1/23/23, 3:19 AM - User 2: Bye!" in docs[2].page_content
def test_dedoc_table_handling() -> None:
file_name = "stanley-cups.csv"
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
loader = DedocFileLoader(file_path, split="document")
docs = loader.load()
assert len(docs) == 2
assert docs[0].metadata["file_name"] == "stanley-cups.csv"
assert docs[0].metadata["file_type"] == "text/csv"
assert docs[1].metadata["type"] == "table"
assert '<td colspan="1" rowspan="1">1</td>' in docs[1].metadata["text_as_html"]
assert "Maple Leafs\tTOR\t13" in docs[1].page_content
def test_dedoc_api_file_loader() -> None:
file_name = "whatsapp_chat.txt"
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, file_name)
loader = DedocAPIFileLoader(
file_path, split="line", url="https://dedoc-readme.hf.space"
)
docs = loader.load()
assert len(docs) == 10
assert docs[0].metadata["file_name"] == "whatsapp_chat.txt"
assert docs[0].metadata["file_type"] == "text/plain"
assert "[05.05.23, 15:48:11] James: Hi here" in docs[0].page_content
assert "[11/8/21, 9:41:32 AM] User name: Message 123" in docs[1].page_content
assert "1/23/23, 3:19 AM - User 2: Bye!" in docs[2].page_content

View File

@ -51,6 +51,9 @@ EXPECTED_ALL = [
"CubeSemanticLoader",
"DataFrameLoader",
"DatadogLogsLoader",
"DedocAPIFileLoader",
"DedocFileLoader",
"DedocPDFLoader",
"PebbloSafeLoader",
"DiffbotLoader",
"DirectoryLoader",