Revert pinecone v4 support (#7566)

Revert 9d13dcd
This commit is contained in:
Bagatur
2023-07-11 20:58:59 -04:00
committed by GitHub
parent e811c5e8c6
commit 2babe3069f
2 changed files with 129 additions and 38 deletions

View File

@@ -13,6 +13,7 @@ from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores.pinecone import Pinecone
index_name = "langchain-test-index" # name of the index
namespace_name = "langchain-test-namespace" # name of the namespace
dimension = 1536 # dimension of the embeddings
@@ -40,28 +41,40 @@ class TestPinecone:
cls.index = pinecone.Index(index_name)
if index_name in pinecone.list_indexes():
pinecone.delete_index(index_name)
index_stats = cls.index.describe_index_stats()
if index_stats["dimension"] == dimension:
# delete all the vectors in the index if the dimension is the same
# from all namespaces
index_stats = cls.index.describe_index_stats()
for _namespace_name in index_stats["namespaces"].keys():
cls.index.delete(delete_all=True, namespace=_namespace_name)
pinecone.create_index(name=index_name, dimension=dimension)
else:
pinecone.delete_index(index_name)
pinecone.create_index(name=index_name, dimension=dimension)
else:
pinecone.create_index(name=index_name, dimension=dimension)
# insure the index is empty
index_stats = cls.index.describe_index_stats()
assert index_stats["dimension"] == dimension
assert index_stats["total_vector_count"] == 0
if index_stats["namespaces"].get(namespace_name) is not None:
assert index_stats["namespaces"][namespace_name]["vector_count"] == 0
@classmethod
def teardown_class(cls) -> None:
if index_name in pinecone.list_indexes():
pinecone.delete_index(index_name)
pinecone.create_index(index_name, dimension=dimension)
index_stats = cls.index.describe_index_stats()
for _namespace_name in index_stats["namespaces"].keys():
cls.index.delete(delete_all=True, namespace=_namespace_name)
reset_pinecone()
@pytest.fixture(autouse=True)
def setup(self) -> None:
if index_name in pinecone.list_indexes():
pinecone.delete_index(index_name)
pinecone.create_index(index_name, dimension=dimension)
# delete all the vectors in the index
index_stats = self.index.describe_index_stats()
for _namespace_name in index_stats["namespaces"].keys():
self.index.delete(delete_all=True, namespace=_namespace_name)
reset_pinecone()
@@ -75,11 +88,12 @@ class TestPinecone:
texts.insert(0, needs)
docsearch = Pinecone.from_texts(
texts=texts, embedding=embedding_openai, index_name=index_name
texts=texts,
embedding=embedding_openai,
index_name=index_name,
namespace=namespace_name,
)
# wait for the index to be ready
time.sleep(20)
output = docsearch.similarity_search(unique_id, k=1)
output = docsearch.similarity_search(unique_id, k=1, namespace=namespace_name)
assert output == [Document(page_content=needs)]
@pytest.mark.vcr()
@@ -98,10 +112,9 @@ class TestPinecone:
embedding_openai,
index_name=index_name,
metadatas=metadatas,
namespace=namespace_name,
)
# wait for the index to be ready
time.sleep(20)
output = docsearch.similarity_search(needs, k=1)
output = docsearch.similarity_search(needs, k=1, namespace=namespace_name)
# TODO: why metadata={"page": 0.0}) instead of {"page": 0}?
assert output == [Document(page_content=needs, metadata={"page": 0.0})]
@@ -116,10 +129,11 @@ class TestPinecone:
embedding_openai,
index_name=index_name,
metadatas=metadatas,
namespace=namespace_name,
)
output = docsearch.similarity_search_with_score(
"foo", k=3, namespace=namespace_name
)
# wait for the index to be ready
time.sleep(20)
output = docsearch.similarity_search_with_score("foo", k=3)
docs = [o[0] for o in output]
scores = [o[1] for o in output]
sorted_documents = sorted(docs, key=lambda x: x.metadata["page"])
@@ -132,17 +146,57 @@ class TestPinecone:
]
assert scores[0] > scores[1] > scores[2]
def test_from_existing_index_with_namespaces(
self, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test that namespaces are properly handled."""
# Create two indexes with the same name but different namespaces
texts_1 = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts_1))]
Pinecone.from_texts(
texts_1,
embedding_openai,
index_name=index_name,
metadatas=metadatas,
namespace=f"{index_name}-1",
)
texts_2 = ["foo2", "bar2", "baz2"]
metadatas = [{"page": i} for i in range(len(texts_2))]
Pinecone.from_texts(
texts_2,
embedding_openai,
index_name=index_name,
metadatas=metadatas,
namespace=f"{index_name}-2",
)
# Search with namespace
docsearch = Pinecone.from_existing_index(
index_name=index_name,
embedding=embedding_openai,
namespace=f"{index_name}-1",
)
output = docsearch.similarity_search("foo", k=20, namespace=f"{index_name}-1")
# check that we don't get results from the other namespace
page_contents = sorted(set([o.page_content for o in output]))
assert all(content in ["foo", "bar", "baz"] for content in page_contents)
assert all(content not in ["foo2", "bar2", "baz2"] for content in page_contents)
def test_add_documents_with_ids(
self, texts: List[str], embedding_openai: OpenAIEmbeddings
) -> None:
ids = [uuid.uuid4().hex for _ in range(len(texts))]
Pinecone.from_texts(
texts=texts, ids=ids, embedding=embedding_openai, index_name=index_name
texts=texts,
ids=ids,
embedding=embedding_openai,
index_name=index_name,
namespace=index_name,
)
# wait for the index to be ready
time.sleep(20)
index_stats = self.index.describe_index_stats()
assert index_stats["total_vector_count"] == len(texts)
assert index_stats["namespaces"][index_name]["vector_count"] == len(texts)
ids_1 = [uuid.uuid4().hex for _ in range(len(texts))]
Pinecone.from_texts(
@@ -150,10 +204,10 @@ class TestPinecone:
ids=ids_1,
embedding=embedding_openai,
index_name=index_name,
namespace=index_name,
)
# wait for the index to be ready
time.sleep(20)
index_stats = self.index.describe_index_stats()
assert index_stats["namespaces"][index_name]["vector_count"] == len(texts) * 2
assert index_stats["total_vector_count"] == len(texts) * 2
@pytest.mark.vcr()