mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-08 06:23:20 +00:00
experimental[minor]: Add bind_tools and with_structured_output functions to OllamaFunctions (#20881)
Implemented bind_tools for OllamaFunctions. Made OllamaFunctions sub class of ChatOllama. Implemented with_structured_output for OllamaFunctions. integration unit test has been updated. notebook has been updated. --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
@@ -17,7 +17,7 @@
|
||||
"\n",
|
||||
"This notebook shows how to use an experimental wrapper around Ollama that gives it the same API as OpenAI Functions.\n",
|
||||
"\n",
|
||||
"Note that more powerful and capable models will perform better with complex schema and/or multiple functions. The examples below use Mistral.\n",
|
||||
"Note that more powerful and capable models will perform better with complex schema and/or multiple functions. The examples below use llama3 and phi3 models.\n",
|
||||
"For a complete list of supported models and model variants, see the [Ollama model library](https://ollama.ai/library).\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
@@ -32,12 +32,18 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-04-28T00:53:25.276543Z",
|
||||
"start_time": "2024-04-28T00:53:24.881202Z"
|
||||
},
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_experimental.llms.ollama_functions import OllamaFunctions\n",
|
||||
"\n",
|
||||
"model = OllamaFunctions(model=\"mistral\")"
|
||||
"model = OllamaFunctions(model=\"llama3\", format=\"json\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -50,11 +56,16 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-04-26T04:59:17.270931Z",
|
||||
"start_time": "2024-04-26T04:59:17.263347Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = model.bind(\n",
|
||||
" functions=[\n",
|
||||
"model = model.bind_tools(\n",
|
||||
" tools=[\n",
|
||||
" {\n",
|
||||
" \"name\": \"get_current_weather\",\n",
|
||||
" \"description\": \"Get the current weather in a given location\",\n",
|
||||
@@ -88,12 +99,17 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-04-26T04:59:26.092428Z",
|
||||
"start_time": "2024-04-26T04:59:17.272627Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='', additional_kwargs={'function_call': {'name': 'get_current_weather', 'arguments': '{\"location\": \"Boston, MA\", \"unit\": \"celsius\"}'}})"
|
||||
"AIMessage(content='', additional_kwargs={'function_call': {'name': 'get_current_weather', 'arguments': '{\"location\": \"Boston, MA\"}'}}, id='run-1791f9fe-95ad-4ca4-bdf7-9f73eab31e6f-0')"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
@@ -111,54 +127,119 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Using for extraction\n",
|
||||
"## Structured Output\n",
|
||||
"\n",
|
||||
"One useful thing you can do with function calling here is extracting properties from a given input in a structured format:"
|
||||
"One useful thing you can do with function calling using `with_structured_output()` function is extracting properties from a given input in a structured format:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-04-26T04:59:26.098828Z",
|
||||
"start_time": "2024-04-26T04:59:26.094021Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import PromptTemplate\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Schema for structured response\n",
|
||||
"class Person(BaseModel):\n",
|
||||
" name: str = Field(description=\"The person's name\", required=True)\n",
|
||||
" height: float = Field(description=\"The person's height\", required=True)\n",
|
||||
" hair_color: str = Field(description=\"The person's hair color\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Prompt template\n",
|
||||
"prompt = PromptTemplate.from_template(\n",
|
||||
" \"\"\"Alex is 5 feet tall. \n",
|
||||
"Claudia is 1 feet taller than Alex and jumps higher than him. \n",
|
||||
"Claudia is a brunette and Alex is blonde.\n",
|
||||
"\n",
|
||||
"Human: {question}\n",
|
||||
"AI: \"\"\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Chain\n",
|
||||
"llm = OllamaFunctions(model=\"phi3\", format=\"json\", temperature=0)\n",
|
||||
"structured_llm = llm.with_structured_output(Person)\n",
|
||||
"chain = prompt | structured_llm"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Extracting data about Alex"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-04-26T04:59:30.164955Z",
|
||||
"start_time": "2024-04-26T04:59:26.099790Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'name': 'Alex', 'height': 5, 'hair_color': 'blonde'},\n",
|
||||
" {'name': 'Claudia', 'height': 6, 'hair_color': 'brunette'}]"
|
||||
"Person(name='Alex', height=5.0, hair_color='blonde')"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.chains import create_extraction_chain\n",
|
||||
"\n",
|
||||
"# Schema\n",
|
||||
"schema = {\n",
|
||||
" \"properties\": {\n",
|
||||
" \"name\": {\"type\": \"string\"},\n",
|
||||
" \"height\": {\"type\": \"integer\"},\n",
|
||||
" \"hair_color\": {\"type\": \"string\"},\n",
|
||||
" },\n",
|
||||
" \"required\": [\"name\", \"height\"],\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"# Input\n",
|
||||
"input = \"\"\"Alex is 5 feet tall. Claudia is 1 feet taller than Alex and jumps higher than him. Claudia is a brunette and Alex is blonde.\"\"\"\n",
|
||||
"\n",
|
||||
"# Run chain\n",
|
||||
"llm = OllamaFunctions(model=\"mistral\", temperature=0)\n",
|
||||
"chain = create_extraction_chain(schema, llm)\n",
|
||||
"chain.run(input)"
|
||||
"alex = chain.invoke(\"Describe Alex\")\n",
|
||||
"alex"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Extracting data about Claudia"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-04-26T04:59:31.509846Z",
|
||||
"start_time": "2024-04-26T04:59:30.165662Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Person(name='Claudia', height=6.0, hair_color='brunette')"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"claudia = chain.invoke(\"Describe Claudia\")\n",
|
||||
"claudia"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -172,9 +253,9 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.5"
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
|
Reference in New Issue
Block a user