community[minor]: Add tidb loader support (#17788)

This pull request support loading data from TiDB database with
Langchain.

A simple usage:
```
from  langchain_community.document_loaders import TiDBLoader

CONNECTION_STRING = "mysql+pymysql://root@127.0.0.1:4000/test"

QUERY = "select id, name, description from items;"
loader = TiDBLoader(
    connection_string=CONNECTION_STRING,
    query=QUERY,
    page_content_columns=["name", "description"],
    metadata_columns=["id"],
)
documents = loader.load()
print(documents)
```
This commit is contained in:
Ian 2024-02-22 08:42:33 +08:00 committed by GitHub
parent 815ec74298
commit 3019a594b7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 339 additions and 0 deletions

View File

@ -0,0 +1,189 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# TiDB\n",
"\n",
"> [TiDB](https://github.com/pingcap/tidb) is an open-source, cloud-native, distributed, MySQL-Compatible database for elastic scale and real-time analytics.\n",
"\n",
"This notebook introduces how to use `TiDBLoader` to load data from TiDB in langchain."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"\n",
"Before using the `TiDBLoader`, we will install the following dependencies:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, we will configure the connection to a TiDB. In this notebook, we will follow the standard connection method provided by TiDB Cloud to establish a secure and efficient database connection."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"\n",
"# copy from tidb cloud consolereplace it with your own\n",
"tidb_connection_string_template = \"mysql+pymysql://<USER>:<PASSWORD>@<HOST>:4000/<DB>?ssl_ca=/etc/ssl/cert.pem&ssl_verify_cert=true&ssl_verify_identity=true\"\n",
"tidb_password = getpass.getpass(\"Input your TiDB password:\")\n",
"tidb_connection_string = tidb_connection_string_template.replace(\n",
" \"<PASSWORD>\", tidb_password\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Data from TiDB\n",
"\n",
"Here's a breakdown of some key arguments you can use to customize the behavior of the `TiDBLoader`:\n",
"\n",
"- `query` (str): This is the SQL query to be executed against the TiDB database. The query should select the data you want to load into your `Document` objects. \n",
" For instance, you might use a query like `\"SELECT * FROM my_table\"` to fetch all data from `my_table`.\n",
"\n",
"- `page_content_columns` (Optional[List[str]]): Specifies the list of column names whose values should be included in the `page_content` of each `Document` object. \n",
" If set to `None` (the default), all columns returned by the query are included in `page_content`. This allows you to tailor the content of each document based on specific columns of your data.\n",
"\n",
"- `metadata_columns` (Optional[List[str]]): Specifies the list of column names whose values should be included in the `metadata` of each `Document` object. \n",
" By default, this list is empty, meaning no metadata will be included unless explicitly specified. This is useful for including additional information about each document that doesn't form part of the main content but is still valuable for processing or analysis."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from sqlalchemy import Column, Integer, MetaData, String, Table, create_engine\n",
"\n",
"# Connect to the database\n",
"engine = create_engine(tidb_connection_string)\n",
"metadata = MetaData()\n",
"table_name = \"test_tidb_loader\"\n",
"\n",
"# Create a table\n",
"test_table = Table(\n",
" table_name,\n",
" metadata,\n",
" Column(\"id\", Integer, primary_key=True),\n",
" Column(\"name\", String(255)),\n",
" Column(\"description\", String(255)),\n",
")\n",
"metadata.create_all(engine)\n",
"\n",
"\n",
"with engine.connect() as connection:\n",
" transaction = connection.begin()\n",
" try:\n",
" connection.execute(\n",
" test_table.insert(),\n",
" [\n",
" {\"name\": \"Item 1\", \"description\": \"Description of Item 1\"},\n",
" {\"name\": \"Item 2\", \"description\": \"Description of Item 2\"},\n",
" {\"name\": \"Item 3\", \"description\": \"Description of Item 3\"},\n",
" ],\n",
" )\n",
" transaction.commit()\n",
" except:\n",
" transaction.rollback()\n",
" raise"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"------------------------------\n",
"content: name: Item 1\n",
"description: Description of Item 1\n",
"metada: {'id': 1}\n",
"------------------------------\n",
"content: name: Item 2\n",
"description: Description of Item 2\n",
"metada: {'id': 2}\n",
"------------------------------\n",
"content: name: Item 3\n",
"description: Description of Item 3\n",
"metada: {'id': 3}\n"
]
}
],
"source": [
"from langchain_community.document_loaders import TiDBLoader\n",
"\n",
"# Setup TiDBLoader to retrieve data\n",
"loader = TiDBLoader(\n",
" connection_string=tidb_connection_string,\n",
" query=f\"SELECT * FROM {table_name};\",\n",
" page_content_columns=[\"name\", \"description\"],\n",
" metadata_columns=[\"id\"],\n",
")\n",
"\n",
"# Load data\n",
"documents = loader.load()\n",
"\n",
"# Display the loaded documents\n",
"for doc in documents:\n",
" print(\"-\" * 30)\n",
" print(f\"content: {doc.page_content}\\nmetada: {doc.metadata}\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"test_table.drop(bind=engine)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -199,6 +199,7 @@ from langchain_community.document_loaders.tensorflow_datasets import (
TensorflowDatasetLoader,
)
from langchain_community.document_loaders.text import TextLoader
from langchain_community.document_loaders.tidb import TiDBLoader
from langchain_community.document_loaders.tomarkdown import ToMarkdownLoader
from langchain_community.document_loaders.toml import TomlLoader
from langchain_community.document_loaders.trello import TrelloLoader
@ -380,6 +381,7 @@ __all__ = [
"TencentCOSDirectoryLoader",
"TencentCOSFileLoader",
"TextLoader",
"TiDBLoader",
"ToMarkdownLoader",
"TomlLoader",
"TrelloLoader",

View File

@ -0,0 +1,71 @@
from typing import Any, Dict, Iterator, List, Optional
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseLoader
class TiDBLoader(BaseLoader):
"""Load documents from TiDB."""
def __init__(
self,
connection_string: str,
query: str,
page_content_columns: Optional[List[str]] = None,
metadata_columns: Optional[List[str]] = None,
engine_args: Optional[Dict[str, Any]] = None,
) -> None:
"""Initialize TiDB document loader.
Args:
connection_string (str): The connection string for the TiDB database,
format: "mysql+pymysql://root@127.0.0.1:4000/test".
query: The query to run in TiDB.
page_content_columns: Optional. Columns written to Document `page_content`,
default(None) to all columns.
metadata_columns: Optional. Columns written to Document `metadata`,
default(None) to no columns.
engine_args: Optional. Additional arguments to pass to sqlalchemy engine.
"""
self.connection_string = connection_string
self.query = query
self.page_content_columns = page_content_columns
self.metadata_columns = metadata_columns if metadata_columns is not None else []
self.engine_args = engine_args
def lazy_load(self) -> Iterator[Document]:
"""Lazy load TiDB data into document objects."""
from sqlalchemy import create_engine
from sqlalchemy.engine import Engine
from sqlalchemy.sql import text
# use sqlalchemy to create db connection
engine: Engine = create_engine(
self.connection_string, **(self.engine_args or {})
)
# execute query
with engine.connect() as conn:
result = conn.execute(text(self.query))
# convert result to Document objects
column_names = list(result.keys())
for row in result:
# convert row to dict{column:value}
row_data = {
column_names[index]: value for index, value in enumerate(row)
}
page_content = "\n".join(
f"{k}: {v}"
for k, v in row_data.items()
if self.page_content_columns is None
or k in self.page_content_columns
)
metadata = {col: row_data[col] for col in self.metadata_columns}
yield Document(page_content=page_content, metadata=metadata)
def load(self) -> List[Document]:
"""Load TiDB data into document objects."""
return list(self.lazy_load())

View File

@ -0,0 +1,76 @@
import os
import pytest
from sqlalchemy import Column, Integer, MetaData, String, Table, create_engine
from langchain_community.document_loaders import TiDBLoader
try:
CONNECTION_STRING = os.getenv("TEST_TiDB_CONNECTION_URL", "")
if CONNECTION_STRING == "":
raise OSError("TEST_TiDB_URL environment variable is not set")
tidb_available = True
except (OSError, ImportError):
tidb_available = False
@pytest.mark.skipif(not tidb_available, reason="tidb is not available")
def test_load_documents() -> None:
"""Test loading documents from TiDB."""
# Connect to the database
engine = create_engine(CONNECTION_STRING)
metadata = MetaData()
table_name = "tidb_loader_intergration_test"
# Create a test table
test_table = Table(
table_name,
metadata,
Column("id", Integer, primary_key=True),
Column("name", String(255)),
Column("description", String(255)),
)
metadata.create_all(engine)
with engine.connect() as connection:
transaction = connection.begin()
try:
connection.execute(
test_table.insert(),
[
{"name": "Item 1", "description": "Description of Item 1"},
{"name": "Item 2", "description": "Description of Item 2"},
{"name": "Item 3", "description": "Description of Item 3"},
],
)
transaction.commit()
except:
transaction.rollback()
raise
loader = TiDBLoader(
connection_string=CONNECTION_STRING,
query=f"SELECT * FROM {table_name};",
page_content_columns=["name", "description"],
metadata_columns=["id"],
)
documents = loader.load()
test_table.drop(bind=engine)
# check
assert len(documents) == 3
assert (
documents[0].page_content == "name: Item 1\ndescription: Description of Item 1"
)
assert documents[0].metadata == {"id": 1}
assert (
documents[1].page_content == "name: Item 2\ndescription: Description of Item 2"
)
assert documents[1].metadata == {"id": 2}
assert (
documents[2].page_content == "name: Item 3\ndescription: Description of Item 3"
)
assert documents[2].metadata == {"id": 3}

View File

@ -144,6 +144,7 @@ EXPECTED_ALL = [
"TencentCOSDirectoryLoader",
"TencentCOSFileLoader",
"TextLoader",
"TiDBLoader",
"ToMarkdownLoader",
"TomlLoader",
"TrelloLoader",