|
|
|
@@ -5,51 +5,85 @@ This page contains `arXiv` papers referenced in the LangChain Documentation, API
|
|
|
|
|
Templates, and Cookbooks.
|
|
|
|
|
|
|
|
|
|
From the opposite direction, scientists use `LangChain` in research and reference it in the research papers.
|
|
|
|
|
Here you find papers that reference:
|
|
|
|
|
- [LangChain](https://arxiv.org/search/?query=langchain&searchtype=all&source=header)
|
|
|
|
|
- [LangGraph](https://arxiv.org/search/?query=langgraph&searchtype=all&source=header)
|
|
|
|
|
- [LangSmith](https://arxiv.org/search/?query=langsmith&searchtype=all&source=header)
|
|
|
|
|
|
|
|
|
|
`arXiv` papers with references to:
|
|
|
|
|
[LangChain](https://arxiv.org/search/?query=langchain&searchtype=all&source=header) | [LangGraph](https://arxiv.org/search/?query=langgraph&searchtype=all&source=header) | [LangSmith](https://arxiv.org/search/?query=langsmith&searchtype=all&source=header)
|
|
|
|
|
|
|
|
|
|
## Summary
|
|
|
|
|
|
|
|
|
|
| arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation|
|
|
|
|
|
|------------------|---------|-------------------|------------------------|
|
|
|
|
|
| `2402.03620v1` [Self-Discover: Large Language Models Self-Compose Reasoning Structures](http://arxiv.org/abs/2402.03620v1) | Pei Zhou, Jay Pujara, Xiang Ren, et al. | 2024-02-06 | `Cookbook:` [self-discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb)
|
|
|
|
|
| `2401.18059v1` [RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval](http://arxiv.org/abs/2401.18059v1) | Parth Sarthi, Salman Abdullah, Aditi Tuli, et al. | 2024-01-31 | `Cookbook:` [RAPTOR](https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb)
|
|
|
|
|
| `2401.15884v2` [Corrective Retrieval Augmented Generation](http://arxiv.org/abs/2401.15884v2) | Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al. | 2024-01-29 | `Cookbook:` [langgraph_crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
|
|
|
|
|
| `2401.04088v1` [Mixtral of Experts](http://arxiv.org/abs/2401.04088v1) | Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al. | 2024-01-08 | `Cookbook:` [together_ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
|
|
|
|
|
| `2312.06648v2` [Dense X Retrieval: What Retrieval Granularity Should We Use?](http://arxiv.org/abs/2312.06648v2) | Tong Chen, Hongwei Wang, Sihao Chen, et al. | 2023-12-11 | `Template:` [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
|
|
|
|
|
| `2311.09210v1` [Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models](http://arxiv.org/abs/2311.09210v1) | Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al. | 2023-11-15 | `Template:` [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
|
|
|
|
|
| `2310.11511v1` [Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection](http://arxiv.org/abs/2310.11511v1) | Akari Asai, Zeqiu Wu, Yizhong Wang, et al. | 2023-10-17 | `Cookbook:` [langgraph_self_rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
|
|
|
|
|
| `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023-10-09 | `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting), `Cookbook:` [stepback-qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
|
|
|
|
|
| `2307.09288v2` [Llama 2: Open Foundation and Fine-Tuned Chat Models](http://arxiv.org/abs/2307.09288v2) | Hugo Touvron, Louis Martin, Kevin Stone, et al. | 2023-07-18 | `Cookbook:` [Semi_Structured_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
|
|
|
|
|
| `2305.14283v3` [Query Rewriting for Retrieval-Augmented Large Language Models](http://arxiv.org/abs/2305.14283v3) | Xinbei Ma, Yeyun Gong, Pengcheng He, et al. | 2023-05-23 | `Template:` [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read), `Cookbook:` [rewrite](https://github.com/langchain-ai/langchain/blob/master/cookbook/rewrite.ipynb)
|
|
|
|
|
| `2305.08291v1` [Large Language Model Guided Tree-of-Thought](http://arxiv.org/abs/2305.08291v1) | Jieyi Long | 2023-05-15 | `API:` [langchain_experimental.tot](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.tot), `Cookbook:` [tree_of_thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb)
|
|
|
|
|
| `2305.04091v3` [Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models](http://arxiv.org/abs/2305.04091v3) | Lei Wang, Wanyu Xu, Yihuai Lan, et al. | 2023-05-06 | `Cookbook:` [plan_and_execute_agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
|
|
|
|
|
| `2305.02156v1` [Zero-Shot Listwise Document Reranking with a Large Language Model](http://arxiv.org/abs/2305.02156v1) | Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al. | 2023-05-03 | `API:` [langchain...LLMListwiseRerank](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
|
|
|
|
|
| `2304.08485v2` [Visual Instruction Tuning](http://arxiv.org/abs/2304.08485v2) | Haotian Liu, Chunyuan Li, Qingyang Wu, et al. | 2023-04-17 | `Cookbook:` [Semi_structured_and_multi_modal_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb), [Semi_structured_multi_modal_RAG_LLaMA2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb)
|
|
|
|
|
| `2304.03442v2` [Generative Agents: Interactive Simulacra of Human Behavior](http://arxiv.org/abs/2304.03442v2) | Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al. | 2023-04-07 | `Cookbook:` [multiagent_bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb), [generative_agents_interactive_simulacra_of_human_behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb)
|
|
|
|
|
| `2303.17760v2` [CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society](http://arxiv.org/abs/2303.17760v2) | Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al. | 2023-03-31 | `Cookbook:` [camel_role_playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
|
|
|
|
|
| `2303.17580v4` [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face](http://arxiv.org/abs/2303.17580v4) | Yongliang Shen, Kaitao Song, Xu Tan, et al. | 2023-03-30 | `API:` [langchain_experimental.autonomous_agents](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.autonomous_agents), `Cookbook:` [hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb)
|
|
|
|
|
| `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023-01-24 | `API:` [langchain_community...OCIModelDeploymentTGI](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/langchain_community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
|
|
|
|
| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022-12-20 | `API:` [langchain...HypotheticalDocumentEmbedder](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder), `Template:` [hyde](https://python.langchain.com/docs/templates/hyde), `Cookbook:` [hypothetical_document_embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
|
|
|
|
|
| `2212.07425v3` [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](http://arxiv.org/abs/2212.07425v3) | Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. | 2022-12-12 | `API:` [langchain_experimental.fallacy_removal](https://python.langchain.com/v0.2/api_reference//arxiv/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
|
|
|
|
|
| `2211.13892v2` [Complementary Explanations for Effective In-Context Learning](http://arxiv.org/abs/2211.13892v2) | Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. | 2022-11-25 | `API:` [langchain_core...MaxMarginalRelevanceExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
|
|
|
|
|
| `2211.10435v2` [PAL: Program-aided Language Models](http://arxiv.org/abs/2211.10435v2) | Luyu Gao, Aman Madaan, Shuyan Zhou, et al. | 2022-11-18 | `API:` [langchain_experimental.pal_chain](https://python.langchain.com/v0.2/api_reference//python/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://python.langchain.com/v0.2/api_reference/experimental/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), `Cookbook:` [program_aided_language_model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
|
|
|
|
|
| `2210.03629v3` [ReAct: Synergizing Reasoning and Acting in Language Models](http://arxiv.org/abs/2210.03629v3) | Shunyu Yao, Jeffrey Zhao, Dian Yu, et al. | 2022-10-06 | `Docs:` [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping), `API:` [langchain...TrajectoryEvalChain](https://python.langchain.com/v0.2/api_reference/langchain/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain), [langchain...create_react_agent](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent)
|
|
|
|
|
| `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022-09-22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
|
|
|
|
|
| `2205.13147v4` [Matryoshka Representation Learning](http://arxiv.org/abs/2205.13147v4) | Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al. | 2022-05-26 | `Docs:` [docs/integrations/providers/snowflake](https://python.langchain.com/docs/integrations/providers/snowflake)
|
|
|
|
|
| `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Çelebi, Holger Schwenk | 2022-05-25 | `API:` [langchain_community...LaserEmbeddings](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
|
|
|
|
|
| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022-03-15 | `API:` [langchain_community...SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
|
|
|
|
|
| `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022-02-01 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
|
|
|
|
| `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021-02-26 | `API:` [langchain_experimental.open_clip](https://python.langchain.com/v0.2/api_reference//arxiv/experimental_api_reference.html#module-langchain_experimental.open_clip)
|
|
|
|
|
| `1909.05858v2` [CTRL: A Conditional Transformer Language Model for Controllable Generation](http://arxiv.org/abs/1909.05858v2) | Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. | 2019-09-11 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
|
|
|
|
| `2403.14403v2` [Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity](http://arxiv.org/abs/2403.14403v2) | Soyeong Jeong, Jinheon Baek, Sukmin Cho, et al. | 2024‑03‑21 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
|
|
|
|
|
| `2402.03620v1` [Self-Discover: Large Language Models Self-Compose Reasoning Structures](http://arxiv.org/abs/2402.03620v1) | Pei Zhou, Jay Pujara, Xiang Ren, et al. | 2024‑02‑06 | `Cookbook:` [Self-Discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb)
|
|
|
|
|
| `2401.18059v1` [RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval](http://arxiv.org/abs/2401.18059v1) | Parth Sarthi, Salman Abdullah, Aditi Tuli, et al. | 2024‑01‑31 | `Cookbook:` [Raptor](https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb)
|
|
|
|
|
| `2401.15884v2` [Corrective Retrieval Augmented Generation](http://arxiv.org/abs/2401.15884v2) | Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al. | 2024‑01‑29 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `Cookbook:` [Langgraph Crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
|
|
|
|
|
| `2401.08500v1` [Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering](http://arxiv.org/abs/2401.08500v1) | Tal Ridnik, Dedy Kredo, Itamar Friedman | 2024‑01‑16 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
|
|
|
|
|
| `2401.04088v1` [Mixtral of Experts](http://arxiv.org/abs/2401.04088v1) | Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al. | 2024‑01‑08 | `Cookbook:` [Together Ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
|
|
|
|
|
| `2312.06648v2` [Dense X Retrieval: What Retrieval Granularity Should We Use?](http://arxiv.org/abs/2312.06648v2) | Tong Chen, Hongwei Wang, Sihao Chen, et al. | 2023‑12‑11 | `Template:` [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
|
|
|
|
|
| `2311.09210v1` [Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models](http://arxiv.org/abs/2311.09210v1) | Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al. | 2023‑11‑15 | `Template:` [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
|
|
|
|
|
| `2310.11511v1` [Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection](http://arxiv.org/abs/2310.11511v1) | Akari Asai, Zeqiu Wu, Yizhong Wang, et al. | 2023‑10‑17 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `Cookbook:` [Langgraph Self Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
|
|
|
|
|
| `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023‑10‑09 | `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting), `Cookbook:` [Stepback-Qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
|
|
|
|
|
| `2307.15337v3` [Skeleton-of-Thought: Prompting LLMs for Efficient Parallel Generation](http://arxiv.org/abs/2307.15337v3) | Xuefei Ning, Zinan Lin, Zixuan Zhou, et al. | 2023‑07‑28 | `Template:` [skeleton-of-thought](https://python.langchain.com/docs/templates/skeleton-of-thought)
|
|
|
|
|
| `2307.09288v2` [Llama 2: Open Foundation and Fine-Tuned Chat Models](http://arxiv.org/abs/2307.09288v2) | Hugo Touvron, Louis Martin, Kevin Stone, et al. | 2023‑07‑18 | `Cookbook:` [Semi Structured Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
|
|
|
|
|
| `2307.03172v3` [Lost in the Middle: How Language Models Use Long Contexts](http://arxiv.org/abs/2307.03172v3) | Nelson F. Liu, Kevin Lin, John Hewitt, et al. | 2023‑07‑06 | `Docs:` [docs/how_to/long_context_reorder](https://python.langchain.com/v0.2/docs/how_to/long_context_reorder)
|
|
|
|
|
| `2305.14283v3` [Query Rewriting for Retrieval-Augmented Large Language Models](http://arxiv.org/abs/2305.14283v3) | Xinbei Ma, Yeyun Gong, Pengcheng He, et al. | 2023‑05‑23 | `Template:` [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read), `Cookbook:` [Rewrite](https://github.com/langchain-ai/langchain/blob/master/cookbook/rewrite.ipynb)
|
|
|
|
|
| `2305.08291v1` [Large Language Model Guided Tree-of-Thought](http://arxiv.org/abs/2305.08291v1) | Jieyi Long | 2023‑05‑15 | `API:` [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot), `Cookbook:` [Tree Of Thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb)
|
|
|
|
|
| `2305.04091v3` [Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models](http://arxiv.org/abs/2305.04091v3) | Lei Wang, Wanyu Xu, Yihuai Lan, et al. | 2023‑05‑06 | `Cookbook:` [Plan And Execute Agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
|
|
|
|
|
| `2305.02156v1` [Zero-Shot Listwise Document Reranking with a Large Language Model](http://arxiv.org/abs/2305.02156v1) | Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al. | 2023‑05‑03 | `Docs:` [docs/how_to/contextual_compression](https://python.langchain.com/v0.2/docs/how_to/contextual_compression), `API:` [langchain...LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
|
|
|
|
|
| `2304.08485v2` [Visual Instruction Tuning](http://arxiv.org/abs/2304.08485v2) | Haotian Liu, Chunyuan Li, Qingyang Wu, et al. | 2023‑04‑17 | `Cookbook:` [Semi Structured Multi Modal Rag Llama2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb), [Semi Structured And Multi Modal Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb)
|
|
|
|
|
| `2304.03442v2` [Generative Agents: Interactive Simulacra of Human Behavior](http://arxiv.org/abs/2304.03442v2) | Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al. | 2023‑04‑07 | `Cookbook:` [Generative Agents Interactive Simulacra Of Human Behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb), [Multiagent Bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb)
|
|
|
|
|
| `2303.17760v2` [CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society](http://arxiv.org/abs/2303.17760v2) | Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al. | 2023‑03‑31 | `Cookbook:` [Camel Role Playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
|
|
|
|
|
| `2303.17580v4` [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face](http://arxiv.org/abs/2303.17580v4) | Yongliang Shen, Kaitao Song, Xu Tan, et al. | 2023‑03‑30 | `API:` [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents), `Cookbook:` [Hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb)
|
|
|
|
|
| `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023‑01‑24 | `API:` [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
|
|
|
|
| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022‑12‑20 | `API:` [langchain...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder), `Template:` [hyde](https://python.langchain.com/docs/templates/hyde), `Cookbook:` [Hypothetical Document Embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
|
|
|
|
|
| `2212.08073v1` [Constitutional AI: Harmlessness from AI Feedback](http://arxiv.org/abs/2212.08073v1) | Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al. | 2022‑12‑15 | `Docs:` [docs/versions/migrating_chains/constitutional_chain](https://python.langchain.com/v0.2/docs/versions/migrating_chains/constitutional_chain)
|
|
|
|
|
| `2212.07425v3` [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](http://arxiv.org/abs/2212.07425v3) | Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. | 2022‑12‑12 | `API:` [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
|
|
|
|
|
| `2211.13892v2` [Complementary Explanations for Effective In-Context Learning](http://arxiv.org/abs/2211.13892v2) | Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. | 2022‑11‑25 | `API:` [langchain_core...MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
|
|
|
|
|
| `2211.10435v2` [PAL: Program-aided Language Models](http://arxiv.org/abs/2211.10435v2) | Luyu Gao, Aman Madaan, Shuyan Zhou, et al. | 2022‑11‑18 | `API:` [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), `Cookbook:` [Program Aided Language Model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
|
|
|
|
|
| `2210.03629v3` [ReAct: Synergizing Reasoning and Acting in Language Models](http://arxiv.org/abs/2210.03629v3) | Shunyu Yao, Jeffrey Zhao, Dian Yu, et al. | 2022‑10‑06 | `Docs:` [docs/integrations/providers/cohere](https://python.langchain.com/v0.2/docs/integrations/providers/cohere), [docs/integrations/tools/ionic_shopping](https://python.langchain.com/v0.2/docs/integrations/tools/ionic_shopping), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `API:` [langchain...create_react_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent), [langchain...TrajectoryEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain)
|
|
|
|
|
| `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022‑09‑22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/v0.2/docs/integrations/providers/activeloop_deeplake)
|
|
|
|
|
| `2205.13147v4` [Matryoshka Representation Learning](http://arxiv.org/abs/2205.13147v4) | Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al. | 2022‑05‑26 | `Docs:` [docs/integrations/providers/snowflake](https://python.langchain.com/v0.2/docs/integrations/providers/snowflake)
|
|
|
|
|
| `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Çelebi, Holger Schwenk | 2022‑05‑25 | `API:` [langchain_community...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
|
|
|
|
|
| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022‑03‑15 | `Docs:` [docs/tutorials/sql_qa](https://python.langchain.com/v0.2/docs/tutorials/sql_qa), `API:` [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL), [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase)
|
|
|
|
|
| `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022‑02‑01 | `API:` [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
|
|
|
|
| `2112.01488v3` [ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction](http://arxiv.org/abs/2112.01488v3) | Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, et al. | 2021‑12‑02 | `Docs:` [docs/integrations/retrievers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/providers/ragatouille), [docs/integrations/providers/dspy](https://python.langchain.com/v0.2/docs/integrations/providers/dspy)
|
|
|
|
|
| `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021‑02‑26 | `API:` [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip)
|
|
|
|
|
| `1909.05858v2` [CTRL: A Conditional Transformer Language Model for Controllable Generation](http://arxiv.org/abs/1909.05858v2) | Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. | 2019‑09‑11 | `API:` [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
|
|
|
|
|
|
|
|
|
## Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity
|
|
|
|
|
|
|
|
|
|
- **Authors:** Soyeong Jeong, Jinheon Baek, Sukmin Cho, et al.
|
|
|
|
|
- **arXiv id:** [2403.14403v2](http://arxiv.org/abs/2403.14403v2) **Published Date:** 2024-03-21
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Retrieval-Augmented Large Language Models (LLMs), which incorporate the
|
|
|
|
|
non-parametric knowledge from external knowledge bases into LLMs, have emerged
|
|
|
|
|
as a promising approach to enhancing response accuracy in several tasks, such
|
|
|
|
|
as Question-Answering (QA). However, even though there are various approaches
|
|
|
|
|
dealing with queries of different complexities, they either handle simple
|
|
|
|
|
queries with unnecessary computational overhead or fail to adequately address
|
|
|
|
|
complex multi-step queries; yet, not all user requests fall into only one of
|
|
|
|
|
the simple or complex categories. In this work, we propose a novel adaptive QA
|
|
|
|
|
framework, that can dynamically select the most suitable strategy for
|
|
|
|
|
(retrieval-augmented) LLMs from the simplest to the most sophisticated ones
|
|
|
|
|
based on the query complexity. Also, this selection process is operationalized
|
|
|
|
|
with a classifier, which is a smaller LM trained to predict the complexity
|
|
|
|
|
level of incoming queries with automatically collected labels, obtained from
|
|
|
|
|
actual predicted outcomes of models and inherent inductive biases in datasets.
|
|
|
|
|
This approach offers a balanced strategy, seamlessly adapting between the
|
|
|
|
|
iterative and single-step retrieval-augmented LLMs, as well as the no-retrieval
|
|
|
|
|
methods, in response to a range of query complexities. We validate our model on
|
|
|
|
|
a set of open-domain QA datasets, covering multiple query complexities, and
|
|
|
|
|
show that ours enhances the overall efficiency and accuracy of QA systems,
|
|
|
|
|
compared to relevant baselines including the adaptive retrieval approaches.
|
|
|
|
|
Code is available at: https://github.com/starsuzi/Adaptive-RAG.
|
|
|
|
|
|
|
|
|
|
## Self-Discover: Large Language Models Self-Compose Reasoning Structures
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2402.03620v1](http://arxiv.org/abs/2402.03620v1) **Published Date:** 2024-02-06
|
|
|
|
|
- **Title:** Self-Discover: Large Language Models Self-Compose Reasoning Structures
|
|
|
|
|
- **Authors:** Pei Zhou, Jay Pujara, Xiang Ren, et al.
|
|
|
|
|
- **arXiv id:** [2402.03620v1](http://arxiv.org/abs/2402.03620v1) **Published Date:** 2024-02-06
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Cookbook:** [self-discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb)
|
|
|
|
@@ -71,9 +105,8 @@ commonalities with human reasoning patterns.
|
|
|
|
|
|
|
|
|
|
## RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2401.18059v1](http://arxiv.org/abs/2401.18059v1) **Published Date:** 2024-01-31
|
|
|
|
|
- **Title:** RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
|
|
|
|
|
- **Authors:** Parth Sarthi, Salman Abdullah, Aditi Tuli, et al.
|
|
|
|
|
- **arXiv id:** [2401.18059v1](http://arxiv.org/abs/2401.18059v1) **Published Date:** 2024-01-31
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Cookbook:** [RAPTOR](https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb)
|
|
|
|
@@ -95,11 +128,11 @@ benchmark by 20% in absolute accuracy.
|
|
|
|
|
|
|
|
|
|
## Corrective Retrieval Augmented Generation
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2401.15884v2](http://arxiv.org/abs/2401.15884v2) **Published Date:** 2024-01-29
|
|
|
|
|
- **Title:** Corrective Retrieval Augmented Generation
|
|
|
|
|
- **Authors:** Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al.
|
|
|
|
|
- **arXiv id:** [2401.15884v2](http://arxiv.org/abs/2401.15884v2) **Published Date:** 2024-01-29
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
|
|
|
|
|
- **Cookbook:** [langgraph_crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Large language models (LLMs) inevitably exhibit hallucinations since the
|
|
|
|
@@ -121,11 +154,36 @@ RAG-based approaches. Experiments on four datasets covering short- and
|
|
|
|
|
long-form generation tasks show that CRAG can significantly improve the
|
|
|
|
|
performance of RAG-based approaches.
|
|
|
|
|
|
|
|
|
|
## Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering
|
|
|
|
|
|
|
|
|
|
- **Authors:** Tal Ridnik, Dedy Kredo, Itamar Friedman
|
|
|
|
|
- **arXiv id:** [2401.08500v1](http://arxiv.org/abs/2401.08500v1) **Published Date:** 2024-01-16
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Code generation problems differ from common natural language problems - they
|
|
|
|
|
require matching the exact syntax of the target language, identifying happy
|
|
|
|
|
paths and edge cases, paying attention to numerous small details in the problem
|
|
|
|
|
spec, and addressing other code-specific issues and requirements. Hence, many
|
|
|
|
|
of the optimizations and tricks that have been successful in natural language
|
|
|
|
|
generation may not be effective for code tasks. In this work, we propose a new
|
|
|
|
|
approach to code generation by LLMs, which we call AlphaCodium - a test-based,
|
|
|
|
|
multi-stage, code-oriented iterative flow, that improves the performances of
|
|
|
|
|
LLMs on code problems. We tested AlphaCodium on a challenging code generation
|
|
|
|
|
dataset called CodeContests, which includes competitive programming problems
|
|
|
|
|
from platforms such as Codeforces. The proposed flow consistently and
|
|
|
|
|
significantly improves results. On the validation set, for example, GPT-4
|
|
|
|
|
accuracy (pass@5) increased from 19% with a single well-designed direct prompt
|
|
|
|
|
to 44% with the AlphaCodium flow. Many of the principles and best practices
|
|
|
|
|
acquired in this work, we believe, are broadly applicable to general code
|
|
|
|
|
generation tasks. Full implementation is available at:
|
|
|
|
|
https://github.com/Codium-ai/AlphaCodium
|
|
|
|
|
|
|
|
|
|
## Mixtral of Experts
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2401.04088v1](http://arxiv.org/abs/2401.04088v1) **Published Date:** 2024-01-08
|
|
|
|
|
- **Title:** Mixtral of Experts
|
|
|
|
|
- **Authors:** Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al.
|
|
|
|
|
- **arXiv id:** [2401.04088v1](http://arxiv.org/abs/2401.04088v1) **Published Date:** 2024-01-08
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Cookbook:** [together_ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
|
|
|
|
@@ -147,9 +205,8 @@ the base and instruct models are released under the Apache 2.0 license.
|
|
|
|
|
|
|
|
|
|
## Dense X Retrieval: What Retrieval Granularity Should We Use?
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2312.06648v2](http://arxiv.org/abs/2312.06648v2) **Published Date:** 2023-12-11
|
|
|
|
|
- **Title:** Dense X Retrieval: What Retrieval Granularity Should We Use?
|
|
|
|
|
- **Authors:** Tong Chen, Hongwei Wang, Sihao Chen, et al.
|
|
|
|
|
- **arXiv id:** [2312.06648v2](http://arxiv.org/abs/2312.06648v2) **Published Date:** 2023-12-11
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Template:** [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
|
|
|
|
@@ -174,9 +231,8 @@ information.
|
|
|
|
|
|
|
|
|
|
## Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2311.09210v1](http://arxiv.org/abs/2311.09210v1) **Published Date:** 2023-11-15
|
|
|
|
|
- **Title:** Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
|
|
|
|
|
- **Authors:** Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al.
|
|
|
|
|
- **arXiv id:** [2311.09210v1](http://arxiv.org/abs/2311.09210v1) **Published Date:** 2023-11-15
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Template:** [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
|
|
|
|
@@ -206,11 +262,11 @@ outside the pre-training knowledge scope.
|
|
|
|
|
|
|
|
|
|
## Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2310.11511v1](http://arxiv.org/abs/2310.11511v1) **Published Date:** 2023-10-17
|
|
|
|
|
- **Title:** Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection
|
|
|
|
|
- **Authors:** Akari Asai, Zeqiu Wu, Yizhong Wang, et al.
|
|
|
|
|
- **arXiv id:** [2310.11511v1](http://arxiv.org/abs/2310.11511v1) **Published Date:** 2023-10-17
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
|
|
|
|
|
- **Cookbook:** [langgraph_self_rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Despite their remarkable capabilities, large language models (LLMs) often
|
|
|
|
@@ -237,9 +293,8 @@ to these models.
|
|
|
|
|
|
|
|
|
|
## Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2310.06117v2](http://arxiv.org/abs/2310.06117v2) **Published Date:** 2023-10-09
|
|
|
|
|
- **Title:** Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
|
|
|
|
|
- **Authors:** Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al.
|
|
|
|
|
- **arXiv id:** [2310.06117v2](http://arxiv.org/abs/2310.06117v2) **Published Date:** 2023-10-09
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Template:** [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting)
|
|
|
|
@@ -256,11 +311,31 @@ including STEM, Knowledge QA, and Multi-Hop Reasoning. For instance, Step-Back
|
|
|
|
|
Prompting improves PaLM-2L performance on MMLU (Physics and Chemistry) by 7%
|
|
|
|
|
and 11% respectively, TimeQA by 27%, and MuSiQue by 7%.
|
|
|
|
|
|
|
|
|
|
## Skeleton-of-Thought: Prompting LLMs for Efficient Parallel Generation
|
|
|
|
|
|
|
|
|
|
- **Authors:** Xuefei Ning, Zinan Lin, Zixuan Zhou, et al.
|
|
|
|
|
- **arXiv id:** [2307.15337v3](http://arxiv.org/abs/2307.15337v3) **Published Date:** 2023-07-28
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Template:** [skeleton-of-thought](https://python.langchain.com/docs/templates/skeleton-of-thought)
|
|
|
|
|
|
|
|
|
|
**Abstract:** This work aims at decreasing the end-to-end generation latency of large
|
|
|
|
|
language models (LLMs). One of the major causes of the high generation latency
|
|
|
|
|
is the sequential decoding approach adopted by almost all state-of-the-art
|
|
|
|
|
LLMs. In this work, motivated by the thinking and writing process of humans, we
|
|
|
|
|
propose Skeleton-of-Thought (SoT), which first guides LLMs to generate the
|
|
|
|
|
skeleton of the answer, and then conducts parallel API calls or batched
|
|
|
|
|
decoding to complete the contents of each skeleton point in parallel. Not only
|
|
|
|
|
does SoT provide considerable speed-ups across 12 LLMs, but it can also
|
|
|
|
|
potentially improve the answer quality on several question categories. SoT is
|
|
|
|
|
an initial attempt at data-centric optimization for inference efficiency, and
|
|
|
|
|
showcases the potential of eliciting high-quality answers by explicitly
|
|
|
|
|
planning the answer structure in language.
|
|
|
|
|
|
|
|
|
|
## Llama 2: Open Foundation and Fine-Tuned Chat Models
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2307.09288v2](http://arxiv.org/abs/2307.09288v2) **Published Date:** 2023-07-18
|
|
|
|
|
- **Title:** Llama 2: Open Foundation and Fine-Tuned Chat Models
|
|
|
|
|
- **Authors:** Hugo Touvron, Louis Martin, Kevin Stone, et al.
|
|
|
|
|
- **arXiv id:** [2307.09288v2](http://arxiv.org/abs/2307.09288v2) **Published Date:** 2023-07-18
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Cookbook:** [Semi_Structured_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
|
|
|
|
@@ -275,11 +350,32 @@ detailed description of our approach to fine-tuning and safety improvements of
|
|
|
|
|
Llama 2-Chat in order to enable the community to build on our work and
|
|
|
|
|
contribute to the responsible development of LLMs.
|
|
|
|
|
|
|
|
|
|
## Lost in the Middle: How Language Models Use Long Contexts
|
|
|
|
|
|
|
|
|
|
- **Authors:** Nelson F. Liu, Kevin Lin, John Hewitt, et al.
|
|
|
|
|
- **arXiv id:** [2307.03172v3](http://arxiv.org/abs/2307.03172v3) **Published Date:** 2023-07-06
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Documentation:** [docs/how_to/long_context_reorder](https://python.langchain.com/v0.2/docs/how_to/long_context_reorder)
|
|
|
|
|
|
|
|
|
|
**Abstract:** While recent language models have the ability to take long contexts as input,
|
|
|
|
|
relatively little is known about how well they use longer context. We analyze
|
|
|
|
|
the performance of language models on two tasks that require identifying
|
|
|
|
|
relevant information in their input contexts: multi-document question answering
|
|
|
|
|
and key-value retrieval. We find that performance can degrade significantly
|
|
|
|
|
when changing the position of relevant information, indicating that current
|
|
|
|
|
language models do not robustly make use of information in long input contexts.
|
|
|
|
|
In particular, we observe that performance is often highest when relevant
|
|
|
|
|
information occurs at the beginning or end of the input context, and
|
|
|
|
|
significantly degrades when models must access relevant information in the
|
|
|
|
|
middle of long contexts, even for explicitly long-context models. Our analysis
|
|
|
|
|
provides a better understanding of how language models use their input context
|
|
|
|
|
and provides new evaluation protocols for future long-context language models.
|
|
|
|
|
|
|
|
|
|
## Query Rewriting for Retrieval-Augmented Large Language Models
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2305.14283v3](http://arxiv.org/abs/2305.14283v3) **Published Date:** 2023-05-23
|
|
|
|
|
- **Title:** Query Rewriting for Retrieval-Augmented Large Language Models
|
|
|
|
|
- **Authors:** Xinbei Ma, Yeyun Gong, Pengcheng He, et al.
|
|
|
|
|
- **arXiv id:** [2305.14283v3](http://arxiv.org/abs/2305.14283v3) **Published Date:** 2023-05-23
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Template:** [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read)
|
|
|
|
@@ -305,12 +401,11 @@ for retrieval-augmented LLM.
|
|
|
|
|
|
|
|
|
|
## Large Language Model Guided Tree-of-Thought
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2305.08291v1](http://arxiv.org/abs/2305.08291v1) **Published Date:** 2023-05-15
|
|
|
|
|
- **Title:** Large Language Model Guided Tree-of-Thought
|
|
|
|
|
- **Authors:** Jieyi Long
|
|
|
|
|
- **arXiv id:** [2305.08291v1](http://arxiv.org/abs/2305.08291v1) **Published Date:** 2023-05-15
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain_experimental.tot](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.tot)
|
|
|
|
|
- **API Reference:** [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot)
|
|
|
|
|
- **Cookbook:** [tree_of_thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb)
|
|
|
|
|
|
|
|
|
|
**Abstract:** In this paper, we introduce the Tree-of-Thought (ToT) framework, a novel
|
|
|
|
@@ -333,9 +428,8 @@ implementation of the ToT-based Sudoku solver is available on GitHub:
|
|
|
|
|
|
|
|
|
|
## Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2305.04091v3](http://arxiv.org/abs/2305.04091v3) **Published Date:** 2023-05-06
|
|
|
|
|
- **Title:** Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
|
|
|
|
|
- **Authors:** Lei Wang, Wanyu Xu, Yihuai Lan, et al.
|
|
|
|
|
- **arXiv id:** [2305.04091v3](http://arxiv.org/abs/2305.04091v3) **Published Date:** 2023-05-06
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Cookbook:** [plan_and_execute_agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
|
|
|
|
@@ -364,12 +458,12 @@ https://github.com/AGI-Edgerunners/Plan-and-Solve-Prompting.
|
|
|
|
|
|
|
|
|
|
## Zero-Shot Listwise Document Reranking with a Large Language Model
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2305.02156v1](http://arxiv.org/abs/2305.02156v1) **Published Date:** 2023-05-03
|
|
|
|
|
- **Title:** Zero-Shot Listwise Document Reranking with a Large Language Model
|
|
|
|
|
- **Authors:** Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al.
|
|
|
|
|
- **arXiv id:** [2305.02156v1](http://arxiv.org/abs/2305.02156v1) **Published Date:** 2023-05-03
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain...LLMListwiseRerank](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
|
|
|
|
|
- **Documentation:** [docs/how_to/contextual_compression](https://python.langchain.com/v0.2/docs/how_to/contextual_compression)
|
|
|
|
|
- **API Reference:** [langchain...LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Supervised ranking methods based on bi-encoder or cross-encoder architectures
|
|
|
|
|
have shown success in multi-stage text ranking tasks, but they require large
|
|
|
|
@@ -388,12 +482,11 @@ with results showing its potential to generalize across different languages.
|
|
|
|
|
|
|
|
|
|
## Visual Instruction Tuning
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2304.08485v2](http://arxiv.org/abs/2304.08485v2) **Published Date:** 2023-04-17
|
|
|
|
|
- **Title:** Visual Instruction Tuning
|
|
|
|
|
- **Authors:** Haotian Liu, Chunyuan Li, Qingyang Wu, et al.
|
|
|
|
|
- **arXiv id:** [2304.08485v2](http://arxiv.org/abs/2304.08485v2) **Published Date:** 2023-04-17
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Cookbook:** [Semi_structured_and_multi_modal_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb), [Semi_structured_multi_modal_RAG_LLaMA2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb)
|
|
|
|
|
- **Cookbook:** [Semi_structured_multi_modal_RAG_LLaMA2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb), [Semi_structured_and_multi_modal_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Instruction tuning large language models (LLMs) using machine-generated
|
|
|
|
|
instruction-following data has improved zero-shot capabilities on new tasks,
|
|
|
|
@@ -413,12 +506,11 @@ publicly available.
|
|
|
|
|
|
|
|
|
|
## Generative Agents: Interactive Simulacra of Human Behavior
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2304.03442v2](http://arxiv.org/abs/2304.03442v2) **Published Date:** 2023-04-07
|
|
|
|
|
- **Title:** Generative Agents: Interactive Simulacra of Human Behavior
|
|
|
|
|
- **Authors:** Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al.
|
|
|
|
|
- **arXiv id:** [2304.03442v2](http://arxiv.org/abs/2304.03442v2) **Published Date:** 2023-04-07
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Cookbook:** [multiagent_bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb), [generative_agents_interactive_simulacra_of_human_behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb)
|
|
|
|
|
- **Cookbook:** [generative_agents_interactive_simulacra_of_human_behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb), [multiagent_bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Believable proxies of human behavior can empower interactive applications
|
|
|
|
|
ranging from immersive environments to rehearsal spaces for interpersonal
|
|
|
|
@@ -447,9 +539,8 @@ interaction patterns for enabling believable simulations of human behavior.
|
|
|
|
|
|
|
|
|
|
## CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2303.17760v2](http://arxiv.org/abs/2303.17760v2) **Published Date:** 2023-03-31
|
|
|
|
|
- **Title:** CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society
|
|
|
|
|
- **Authors:** Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al.
|
|
|
|
|
- **arXiv id:** [2303.17760v2](http://arxiv.org/abs/2303.17760v2) **Published Date:** 2023-03-31
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Cookbook:** [camel_role_playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
|
|
|
|
@@ -475,12 +566,11 @@ agents and beyond: https://github.com/camel-ai/camel.
|
|
|
|
|
|
|
|
|
|
## HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2303.17580v4](http://arxiv.org/abs/2303.17580v4) **Published Date:** 2023-03-30
|
|
|
|
|
- **Title:** HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
|
|
|
|
|
- **Authors:** Yongliang Shen, Kaitao Song, Xu Tan, et al.
|
|
|
|
|
- **arXiv id:** [2303.17580v4](http://arxiv.org/abs/2303.17580v4) **Published Date:** 2023-03-30
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain_experimental.autonomous_agents](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.autonomous_agents)
|
|
|
|
|
- **API Reference:** [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents)
|
|
|
|
|
- **Cookbook:** [hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Solving complicated AI tasks with different domains and modalities is a key
|
|
|
|
@@ -505,12 +595,11 @@ realization of artificial general intelligence.
|
|
|
|
|
|
|
|
|
|
## A Watermark for Large Language Models
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2301.10226v4](http://arxiv.org/abs/2301.10226v4) **Published Date:** 2023-01-24
|
|
|
|
|
- **Title:** A Watermark for Large Language Models
|
|
|
|
|
- **Authors:** John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al.
|
|
|
|
|
- **arXiv id:** [2301.10226v4](http://arxiv.org/abs/2301.10226v4) **Published Date:** 2023-01-24
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain_community...OCIModelDeploymentTGI](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/langchain_community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
|
|
|
|
- **API Reference:** [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Potential harms of large language models can be mitigated by watermarking
|
|
|
|
|
model output, i.e., embedding signals into generated text that are invisible to
|
|
|
|
@@ -528,12 +617,11 @@ family, and discuss robustness and security.
|
|
|
|
|
|
|
|
|
|
## Precise Zero-Shot Dense Retrieval without Relevance Labels
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2212.10496v1](http://arxiv.org/abs/2212.10496v1) **Published Date:** 2022-12-20
|
|
|
|
|
- **Title:** Precise Zero-Shot Dense Retrieval without Relevance Labels
|
|
|
|
|
- **Authors:** Luyu Gao, Xueguang Ma, Jimmy Lin, et al.
|
|
|
|
|
- **arXiv id:** [2212.10496v1](http://arxiv.org/abs/2212.10496v1) **Published Date:** 2022-12-20
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain...HypotheticalDocumentEmbedder](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder)
|
|
|
|
|
- **API Reference:** [langchain...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder)
|
|
|
|
|
- **Template:** [hyde](https://python.langchain.com/docs/templates/hyde)
|
|
|
|
|
- **Cookbook:** [hypothetical_document_embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
|
|
|
|
|
|
|
|
|
@@ -555,14 +643,40 @@ state-of-the-art unsupervised dense retriever Contriever and shows strong
|
|
|
|
|
performance comparable to fine-tuned retrievers, across various tasks (e.g. web
|
|
|
|
|
search, QA, fact verification) and languages~(e.g. sw, ko, ja).
|
|
|
|
|
|
|
|
|
|
## Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
|
|
|
|
|
## Constitutional AI: Harmlessness from AI Feedback
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2212.07425v3](http://arxiv.org/abs/2212.07425v3) **Published Date:** 2022-12-12
|
|
|
|
|
- **Title:** Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
|
|
|
|
|
- **Authors:** Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al.
|
|
|
|
|
- **Authors:** Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al.
|
|
|
|
|
- **arXiv id:** [2212.08073v1](http://arxiv.org/abs/2212.08073v1) **Published Date:** 2022-12-15
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain_experimental.fallacy_removal](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.fallacy_removal)
|
|
|
|
|
- **Documentation:** [docs/versions/migrating_chains/constitutional_chain](https://python.langchain.com/v0.2/docs/versions/migrating_chains/constitutional_chain)
|
|
|
|
|
|
|
|
|
|
**Abstract:** As AI systems become more capable, we would like to enlist their help to
|
|
|
|
|
supervise other AIs. We experiment with methods for training a harmless AI
|
|
|
|
|
assistant through self-improvement, without any human labels identifying
|
|
|
|
|
harmful outputs. The only human oversight is provided through a list of rules
|
|
|
|
|
or principles, and so we refer to the method as 'Constitutional AI'. The
|
|
|
|
|
process involves both a supervised learning and a reinforcement learning phase.
|
|
|
|
|
In the supervised phase we sample from an initial model, then generate
|
|
|
|
|
self-critiques and revisions, and then finetune the original model on revised
|
|
|
|
|
responses. In the RL phase, we sample from the finetuned model, use a model to
|
|
|
|
|
evaluate which of the two samples is better, and then train a preference model
|
|
|
|
|
from this dataset of AI preferences. We then train with RL using the preference
|
|
|
|
|
model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a
|
|
|
|
|
result we are able to train a harmless but non-evasive AI assistant that
|
|
|
|
|
engages with harmful queries by explaining its objections to them. Both the SL
|
|
|
|
|
and RL methods can leverage chain-of-thought style reasoning to improve the
|
|
|
|
|
human-judged performance and transparency of AI decision making. These methods
|
|
|
|
|
make it possible to control AI behavior more precisely and with far fewer human
|
|
|
|
|
labels.
|
|
|
|
|
|
|
|
|
|
## Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
|
|
|
|
|
|
|
|
|
|
- **Authors:** Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al.
|
|
|
|
|
- **arXiv id:** [2212.07425v3](http://arxiv.org/abs/2212.07425v3) **Published Date:** 2022-12-12
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
|
|
|
|
|
|
|
|
|
|
**Abstract:** The spread of misinformation, propaganda, and flawed argumentation has been
|
|
|
|
|
amplified in the Internet era. Given the volume of data and the subtlety of
|
|
|
|
@@ -588,12 +702,11 @@ further work on logical fallacy identification.
|
|
|
|
|
|
|
|
|
|
## Complementary Explanations for Effective In-Context Learning
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2211.13892v2](http://arxiv.org/abs/2211.13892v2) **Published Date:** 2022-11-25
|
|
|
|
|
- **Title:** Complementary Explanations for Effective In-Context Learning
|
|
|
|
|
- **Authors:** Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al.
|
|
|
|
|
- **arXiv id:** [2211.13892v2](http://arxiv.org/abs/2211.13892v2) **Published Date:** 2022-11-25
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain_core...MaxMarginalRelevanceExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
|
|
|
|
|
- **API Reference:** [langchain_core...MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Large language models (LLMs) have exhibited remarkable capabilities in
|
|
|
|
|
learning from explanations in prompts, but there has been limited understanding
|
|
|
|
@@ -614,12 +727,11 @@ performance across three real-world tasks on multiple LLMs.
|
|
|
|
|
|
|
|
|
|
## PAL: Program-aided Language Models
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2211.10435v2](http://arxiv.org/abs/2211.10435v2) **Published Date:** 2022-11-18
|
|
|
|
|
- **Title:** PAL: Program-aided Language Models
|
|
|
|
|
- **Authors:** Luyu Gao, Aman Madaan, Shuyan Zhou, et al.
|
|
|
|
|
- **arXiv id:** [2211.10435v2](http://arxiv.org/abs/2211.10435v2) **Published Date:** 2022-11-18
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain_experimental.pal_chain](https://python.langchain.com/v0.2/api_reference//python/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://python.langchain.com/v0.2/api_reference/experimental/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain)
|
|
|
|
|
- **API Reference:** [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain)
|
|
|
|
|
- **Cookbook:** [program_aided_language_model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Large language models (LLMs) have recently demonstrated an impressive ability
|
|
|
|
@@ -647,13 +759,12 @@ publicly available at http://reasonwithpal.com/ .
|
|
|
|
|
|
|
|
|
|
## ReAct: Synergizing Reasoning and Acting in Language Models
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2210.03629v3](http://arxiv.org/abs/2210.03629v3) **Published Date:** 2022-10-06
|
|
|
|
|
- **Title:** ReAct: Synergizing Reasoning and Acting in Language Models
|
|
|
|
|
- **Authors:** Shunyu Yao, Jeffrey Zhao, Dian Yu, et al.
|
|
|
|
|
- **arXiv id:** [2210.03629v3](http://arxiv.org/abs/2210.03629v3) **Published Date:** 2022-10-06
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Documentation:** [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping)
|
|
|
|
|
- **API Reference:** [langchain...TrajectoryEvalChain](https://python.langchain.com/v0.2/api_reference/langchain/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain), [langchain...create_react_agent](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent)
|
|
|
|
|
- **Documentation:** [docs/integrations/providers/cohere](https://python.langchain.com/v0.2/docs/integrations/providers/cohere), [docs/integrations/tools/ionic_shopping](https://python.langchain.com/v0.2/docs/integrations/tools/ionic_shopping), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
|
|
|
|
|
- **API Reference:** [langchain...create_react_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent), [langchain...TrajectoryEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain)
|
|
|
|
|
|
|
|
|
|
**Abstract:** While large language models (LLMs) have demonstrated impressive capabilities
|
|
|
|
|
across tasks in language understanding and interactive decision making, their
|
|
|
|
@@ -680,12 +791,11 @@ Project site with code: https://react-lm.github.io
|
|
|
|
|
|
|
|
|
|
## Deep Lake: a Lakehouse for Deep Learning
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2209.10785v2](http://arxiv.org/abs/2209.10785v2) **Published Date:** 2022-09-22
|
|
|
|
|
- **Title:** Deep Lake: a Lakehouse for Deep Learning
|
|
|
|
|
- **Authors:** Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al.
|
|
|
|
|
- **arXiv id:** [2209.10785v2](http://arxiv.org/abs/2209.10785v2) **Published Date:** 2022-09-22
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
|
|
|
|
|
- **Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/v0.2/docs/integrations/providers/activeloop_deeplake)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Traditional data lakes provide critical data infrastructure for analytical
|
|
|
|
|
workloads by enabling time travel, running SQL queries, ingesting data with
|
|
|
|
@@ -706,12 +816,11 @@ TensorFlow, JAX, and integrate with numerous MLOps tools.
|
|
|
|
|
|
|
|
|
|
## Matryoshka Representation Learning
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2205.13147v4](http://arxiv.org/abs/2205.13147v4) **Published Date:** 2022-05-26
|
|
|
|
|
- **Title:** Matryoshka Representation Learning
|
|
|
|
|
- **Authors:** Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al.
|
|
|
|
|
- **arXiv id:** [2205.13147v4](http://arxiv.org/abs/2205.13147v4) **Published Date:** 2022-05-26
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **Documentation:** [docs/integrations/providers/snowflake](https://python.langchain.com/docs/integrations/providers/snowflake)
|
|
|
|
|
- **Documentation:** [docs/integrations/providers/snowflake](https://python.langchain.com/v0.2/docs/integrations/providers/snowflake)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Learned representations are a central component in modern ML systems, serving
|
|
|
|
|
a multitude of downstream tasks. When training such representations, it is
|
|
|
|
@@ -738,12 +847,11 @@ are open-sourced at https://github.com/RAIVNLab/MRL.
|
|
|
|
|
|
|
|
|
|
## Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2205.12654v1](http://arxiv.org/abs/2205.12654v1) **Published Date:** 2022-05-25
|
|
|
|
|
- **Title:** Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
|
|
|
|
|
- **Authors:** Kevin Heffernan, Onur Çelebi, Holger Schwenk
|
|
|
|
|
- **arXiv id:** [2205.12654v1](http://arxiv.org/abs/2205.12654v1) **Published Date:** 2022-05-25
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain_community...LaserEmbeddings](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
|
|
|
|
|
- **API Reference:** [langchain_community...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Scaling multilingual representation learning beyond the hundred most frequent
|
|
|
|
|
languages is challenging, in particular to cover the long tail of low-resource
|
|
|
|
@@ -765,12 +873,12 @@ encoders, mine bitexts, and validate the bitexts by training NMT systems.
|
|
|
|
|
|
|
|
|
|
## Evaluating the Text-to-SQL Capabilities of Large Language Models
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2204.00498v1](http://arxiv.org/abs/2204.00498v1) **Published Date:** 2022-03-15
|
|
|
|
|
- **Title:** Evaluating the Text-to-SQL Capabilities of Large Language Models
|
|
|
|
|
- **Authors:** Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau
|
|
|
|
|
- **arXiv id:** [2204.00498v1](http://arxiv.org/abs/2204.00498v1) **Published Date:** 2022-03-15
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain_community...SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
|
|
|
|
|
- **Documentation:** [docs/tutorials/sql_qa](https://python.langchain.com/v0.2/docs/tutorials/sql_qa)
|
|
|
|
|
- **API Reference:** [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL), [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase)
|
|
|
|
|
|
|
|
|
|
**Abstract:** We perform an empirical evaluation of Text-to-SQL capabilities of the Codex
|
|
|
|
|
language model. We find that, without any finetuning, Codex is a strong
|
|
|
|
@@ -782,12 +890,11 @@ few-shot examples.
|
|
|
|
|
|
|
|
|
|
## Locally Typical Sampling
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2202.00666v5](http://arxiv.org/abs/2202.00666v5) **Published Date:** 2022-02-01
|
|
|
|
|
- **Title:** Locally Typical Sampling
|
|
|
|
|
- **Authors:** Clara Meister, Tiago Pimentel, Gian Wiher, et al.
|
|
|
|
|
- **arXiv id:** [2202.00666v5](http://arxiv.org/abs/2202.00666v5) **Published Date:** 2022-02-01
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
|
|
|
|
- **API Reference:** [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Today's probabilistic language generators fall short when it comes to
|
|
|
|
|
producing coherent and fluent text despite the fact that the underlying models
|
|
|
|
@@ -810,14 +917,35 @@ locally typical sampling offers competitive performance (in both abstractive
|
|
|
|
|
summarization and story generation) in terms of quality while consistently
|
|
|
|
|
reducing degenerate repetitions.
|
|
|
|
|
|
|
|
|
|
## Learning Transferable Visual Models From Natural Language Supervision
|
|
|
|
|
## ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [2103.00020v1](http://arxiv.org/abs/2103.00020v1) **Published Date:** 2021-02-26
|
|
|
|
|
- **Title:** Learning Transferable Visual Models From Natural Language Supervision
|
|
|
|
|
- **Authors:** Alec Radford, Jong Wook Kim, Chris Hallacy, et al.
|
|
|
|
|
- **Authors:** Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, et al.
|
|
|
|
|
- **arXiv id:** [2112.01488v3](http://arxiv.org/abs/2112.01488v3) **Published Date:** 2021-12-02
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain_experimental.open_clip](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.open_clip)
|
|
|
|
|
- **Documentation:** [docs/integrations/retrievers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/providers/ragatouille), [docs/integrations/providers/dspy](https://python.langchain.com/v0.2/docs/integrations/providers/dspy)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Neural information retrieval (IR) has greatly advanced search and other
|
|
|
|
|
knowledge-intensive language tasks. While many neural IR methods encode queries
|
|
|
|
|
and documents into single-vector representations, late interaction models
|
|
|
|
|
produce multi-vector representations at the granularity of each token and
|
|
|
|
|
decompose relevance modeling into scalable token-level computations. This
|
|
|
|
|
decomposition has been shown to make late interaction more effective, but it
|
|
|
|
|
inflates the space footprint of these models by an order of magnitude. In this
|
|
|
|
|
work, we introduce ColBERTv2, a retriever that couples an aggressive residual
|
|
|
|
|
compression mechanism with a denoised supervision strategy to simultaneously
|
|
|
|
|
improve the quality and space footprint of late interaction. We evaluate
|
|
|
|
|
ColBERTv2 across a wide range of benchmarks, establishing state-of-the-art
|
|
|
|
|
quality within and outside the training domain while reducing the space
|
|
|
|
|
footprint of late interaction models by 6--10$\times$.
|
|
|
|
|
|
|
|
|
|
## Learning Transferable Visual Models From Natural Language Supervision
|
|
|
|
|
|
|
|
|
|
- **Authors:** Alec Radford, Jong Wook Kim, Chris Hallacy, et al.
|
|
|
|
|
- **arXiv id:** [2103.00020v1](http://arxiv.org/abs/2103.00020v1) **Published Date:** 2021-02-26
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip)
|
|
|
|
|
|
|
|
|
|
**Abstract:** State-of-the-art computer vision systems are trained to predict a fixed set
|
|
|
|
|
of predetermined object categories. This restricted form of supervision limits
|
|
|
|
@@ -842,12 +970,11 @@ https://github.com/OpenAI/CLIP.
|
|
|
|
|
|
|
|
|
|
## CTRL: A Conditional Transformer Language Model for Controllable Generation
|
|
|
|
|
|
|
|
|
|
- **arXiv id:** [1909.05858v2](http://arxiv.org/abs/1909.05858v2) **Published Date:** 2019-09-11
|
|
|
|
|
- **Title:** CTRL: A Conditional Transformer Language Model for Controllable Generation
|
|
|
|
|
- **Authors:** Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al.
|
|
|
|
|
- **arXiv id:** [1909.05858v2](http://arxiv.org/abs/1909.05858v2) **Published Date:** 2019-09-11
|
|
|
|
|
- **LangChain:**
|
|
|
|
|
|
|
|
|
|
- **API Reference:** [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/langchain_community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
|
|
|
|
- **API Reference:** [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
|
|
|
|
|
|
|
|
|
**Abstract:** Large-scale language models show promising text generation capabilities, but
|
|
|
|
|
users cannot easily control particular aspects of the generated text. We
|
|
|
|
|