templates: Add Ollama multi-modal templates (#14868)

Templates for [local multi-modal
LLMs](https://llava-vl.github.io/llava-interactive/) using -
* Image summaries
* Multi-modal embeddings

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
Lance Martin 2023-12-20 15:28:53 -08:00 committed by GitHub
parent 57d1eb733f
commit 320c3ae4c8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
31 changed files with 7478 additions and 56 deletions

View File

@ -1,53 +1,72 @@
# rag-chroma-multi-modal-multi-vector
Presentations (slide decks, etc) contain visual content that challenges conventional RAG.
Multi-modal LLMs enable text-to-image retrieval and question-answering over images.
Multi-modal LLMs unlock new ways to build apps over visual content like presentations.
This template performs multi-modal RAG using Chroma with the multi-vector retriever (see [blog](https://blog.langchain.dev/multi-modal-rag-template/)):
You can ask questions in natural language about a collection of photos, retrieve relevant ones, and have a multi-modal LLM answer questions about the retrieved images.
* Extracts the slides as images
* Uses GPT-4V to summarize each image
* Embeds the image summaries with a link to the original images
* Retrieves relevant image based on similarity between the image summary and the user input
* Finally pass those images to GPT-4V for answer synthesis
This template performs text-to-image retrieval for question-answering about a slide deck, which often contains visual elements that are not captured in standard RAG.
This will use GPT-4V for image captioning and answer synthesis.
## Input
Supply a slide deck as pdf in the `/docs` directory.
By default, this template has a slide deck about Q3 earnings from DataDog, a public techologyy company.
Example questions to ask can be:
```
How many customers does Datadog have?
What is Datadog platform % Y/Y growth in FY20, FY21, and FY22?
```
To create an index of the slide deck, run:
```
poetry install
python ingest.py
```
## Storage
Here is the process the template will use to create an index of the slides (see [blog](https://blog.langchain.dev/multi-modal-rag-template/)):
* Extract the slides as a collection of images
* Use GPT-4V to summarize each image
* Embed the image summaries using text embeddings with a link to the original images
* Retrieve relevant image based on similarity between the image summary and the user input question
* Pass those images to GPT-4V for answer synthesis
By default, this will use [LocalFileStore](https://python.langchain.com/docs/integrations/stores/file_system) to store images and Chroma to store summaries.
For production, it may be desirable to use a remote option such as Redis.
You can set the `local_file_store` flag in `chain.py` and `ingest.py` to switch between the two options.
For Redis, the template will use [UpstashRedisByteStore](https://python.langchain.com/docs/integrations/stores/upstash_redis).
We will use Upstash to store the images, which offers Redis with a REST API.
Simply login [here](https://upstash.com/) and create a database.
This will give you a REST API with:
* UPSTASH_URL
* UPSTASH_TOKEN
* `UPSTASH_URL`
* `UPSTASH_TOKEN`
Set `UPSTASH_URL` and `UPSTASH_TOKEN` as environment variables to access your database.
We will use Chroma to store and index the image summaries, which will be created locally in the template directory.
## Input
Supply a slide deck as pdf in the `/docs` directory.
Create your vectorstore (Chroma) and populae Upstash with:
```
poetry install
python ingest.py
```
## LLM
The app will retrieve images using multi-modal embeddings, and pass them to GPT-4V.
The app will retrieve images based on similarity between the text input and the image summary, and pass the images to GPT-4V.
## Environment Setup
Set the `OPENAI_API_KEY` environment variable to access the OpenAI GPT-4V.
Set `UPSTASH_URL` and `UPSTASH_TOKEN` as environment variables to access your database.
Set `UPSTASH_URL` and `UPSTASH_TOKEN` as environment variables to access your database if you use `UpstashRedisByteStore`.
## Usage

View File

@ -11,7 +11,7 @@ from langchain.embeddings import OpenAIEmbeddings
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.schema.document import Document
from langchain.schema.messages import HumanMessage
from langchain.storage import UpstashRedisByteStore
from langchain.storage import LocalFileStore, UpstashRedisByteStore
from langchain.vectorstores import Chroma
from PIL import Image
@ -126,20 +126,31 @@ def convert_to_base64(pil_image):
return img_str
def create_multi_vector_retriever(vectorstore, image_summaries, images):
def create_multi_vector_retriever(
vectorstore, image_summaries, images, local_file_store
):
"""
Create retriever that indexes summaries, but returns raw images or texts
:param vectorstore: Vectorstore to store embedded image sumamries
:param image_summaries: Image summaries
:param images: Base64 encoded images
:param local_file_store: Use local file storage
:return: Retriever
"""
# Initialize the storage layer for images
UPSTASH_URL = os.getenv("UPSTASH_URL")
UPSTASH_TOKEN = os.getenv("UPSTASH_TOKEN")
store = UpstashRedisByteStore(url=UPSTASH_URL, token=UPSTASH_TOKEN)
# File storage option
if local_file_store:
store = LocalFileStore(
str(Path(__file__).parent / "multi_vector_retriever_metadata")
)
else:
# Initialize the storage layer for images using Redis
UPSTASH_URL = os.getenv("UPSTASH_URL")
UPSTASH_TOKEN = os.getenv("UPSTASH_TOKEN")
store = UpstashRedisByteStore(url=UPSTASH_URL, token=UPSTASH_TOKEN)
# Doc ID
id_key = "doc_id"
# Create the multi-vector retriever
@ -194,4 +205,5 @@ retriever_multi_vector_img = create_multi_vector_retriever(
vectorstore_mvr,
image_summaries,
images_base_64_processed_documents,
local_file_store=True,
)

View File

@ -11,7 +11,7 @@ from langchain.schema.document import Document
from langchain.schema.messages import HumanMessage
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
from langchain.storage import UpstashRedisByteStore
from langchain.storage import LocalFileStore, UpstashRedisByteStore
from langchain.vectorstores import Chroma
from PIL import Image
@ -101,6 +101,9 @@ def multi_modal_rag_chain(retriever):
return chain
# Flag
local_file_store = True
# Load chroma
vectorstore_mvr = Chroma(
collection_name="image_summaries",
@ -108,10 +111,17 @@ vectorstore_mvr = Chroma(
embedding_function=OpenAIEmbeddings(),
)
# Load redis
UPSTASH_URL = os.getenv("UPSTASH_URL")
UPSTASH_TOKEN = os.getenv("UPSTASH_TOKEN")
store = UpstashRedisByteStore(url=UPSTASH_URL, token=UPSTASH_TOKEN)
if local_file_store:
store = LocalFileStore(
str(Path(__file__).parent.parent / "multi_vector_retriever_metadata")
)
else:
# Load redis
UPSTASH_URL = os.getenv("UPSTASH_URL")
UPSTASH_TOKEN = os.getenv("UPSTASH_TOKEN")
store = UpstashRedisByteStore(url=UPSTASH_URL, token=UPSTASH_TOKEN)
#
id_key = "doc_id"
# Create the multi-vector retriever

View File

@ -1,32 +1,41 @@
# rag-chroma-multi-modal
Presentations (slide decks, etc) contain visual content that challenges conventional RAG.
Multi-modal LLMs enable text-to-image retrieval and question-answering over images.
Multi-modal LLMs unlock new ways to build apps over visual content like presentations.
This template performs multi-modal RAG using Chroma with multi-modal OpenCLIP embeddings and OpenAI GPT-4V.
You can ask questions in natural language about a collection of photos, retrieve relevant ones, and have a multi-modal LLM answer questions about the retrieved images.
This template performs text-to-image retrieval for question-answering about a slide deck, which often contains visual elements that are not captured in standard RAG.
This will use OpenCLIP embeddings and GPT-4V for answer synthesis.
## Input
Supply a slide deck as pdf in the `/docs` directory.
Create your vectorstore with:
By default, this template has a slide deck about Q3 earnings from DataDog, a public techologyy company.
Example questions to ask can be:
```
How many customers does Datadog have?
What is Datadog platform % Y/Y growth in FY20, FY21, and FY22?
```
To create an index of the slide deck, run:
```
poetry install
python ingest.py
```
## Embeddings
## Storage
This template will use [OpenCLIP](https://github.com/mlfoundations/open_clip) multi-modal embeddings.
This template will use [OpenCLIP](https://github.com/mlfoundations/open_clip) multi-modal embeddings to embed the images.
You can select different options (see results [here](https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_results.csv)).
You can select different embedding model options (see results [here](https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_results.csv)).
The first time you run the app, it will automatically download the multimodal embedding model.
By default, LangChain will use an embedding model with reasonably strong performance, `ViT-H-14`.
By default, LangChain will use an embedding model with moderate performance but lower memory requirments, `ViT-H-14`.
You can choose alternative `OpenCLIPEmbeddings` models in `rag_chroma_multi_modal/ingest.py`:
```
@ -41,7 +50,7 @@ vectorstore_mmembd = Chroma(
## LLM
The app will retrieve images using multi-modal embeddings, and pass them to GPT-4V.
The app will retrieve images based on similarity between the text input and the image, which are both mapped to multi-modal embedding space. It will then pass the images to GPT-4V.
## Environment Setup

View File

@ -1,34 +1,43 @@
# rag-gemini-multi-modal
Presentations (slide decks, etc) contain visual content that challenges conventional RAG.
Multi-modal LLMs enable text-to-image retrieval and question-answering over images.
Multi-modal LLMs unlock new ways to build apps over visual content like presentations.
You can ask questions in natural language about a collection of photos, retrieve relevant ones, and have a multi-modal LLM answer questions about the retrieved images.
This template performs text-to-image retrieval for question-answering about a slide deck, which often contains visual elements that are not captured in standard RAG.
This template performs multi-modal RAG using Chroma with multi-modal OpenCLIP embeddings and [Google Gemini](https://deepmind.google/technologies/gemini/#introduction).
This will use OpenCLIP embeddings and [Google Gemini](https://deepmind.google/technologies/gemini/#introduction) for answer synthesis.
## Input
Supply a slide deck as pdf in the `/docs` directory.
Create your vectorstore with:
By default, this template has a slide deck about Q3 earnings from DataDog, a public techologyy company.
Example questions to ask can be:
```
How many customers does Datadog have?
What is Datadog platform % Y/Y growth in FY20, FY21, and FY22?
```
To create an index of the slide deck, run:
```
poetry install
python ingest.py
```
## Embeddings
## Storage
This template will use [OpenCLIP](https://github.com/mlfoundations/open_clip) multi-modal embeddings.
This template will use [OpenCLIP](https://github.com/mlfoundations/open_clip) multi-modal embeddings to embed the images.
You can select different options (see results [here](https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_results.csv)).
You can select different embedding model options (see results [here](https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_results.csv)).
The first time you run the app, it will automatically download the multimodal embedding model.
By default, LangChain will use an embedding model with reasonably strong performance, `ViT-H-14`.
By default, LangChain will use an embedding model with moderate performance but lower memory requirments, `ViT-H-14`.
You can choose alternative `OpenCLIPEmbeddings` models in `ingest.py`:
You can choose alternative `OpenCLIPEmbeddings` models in `rag_chroma_multi_modal/ingest.py`:
```
vectorstore_mmembd = Chroma(
collection_name="multi-modal-rag",
@ -45,7 +54,7 @@ The app will retrieve images using multi-modal embeddings, and pass them to Goog
## Environment Setup
Set the `GOOGLE_API_KEY` environment variable to access Gemini.
Set your `GOOGLE_API_KEY` environment variable in order to access Gemini.
## Usage

View File

@ -0,0 +1,2 @@
docs/img_*.jpg
chroma_db_multi_modal

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2023 LangChain, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,122 @@
# rag-multi-modal-local
Visual search is a famililar application to many with iPhones or Android devices: use natural language to search across your photo collection.
With the release of open source, multi-modal LLMs it's possible to build this kind of application for yourself and have it run on your personal laptop.
This template demonstrates how to perform visual search and question-answering over a collection of photos.
Given a set of photos, it will use OpenCLIP embeddings to index them, retrieve photos relevant to user question, and use Ollama to run a local, open-source multi-modal LLM to answer questions about the retrieved photos.
## Input
Supply a set of photos in the `/docs` directory.
By default, this template has a toy collection of 3 food pictures.
Example questions to ask can be:
```
What kind of soft serve did I have?
```
In practice, a larger corpus of images can be tested.
To create an index of the images, run:
```
poetry install
python ingest.py
```
## Storage
This template will use [OpenCLIP](https://github.com/mlfoundations/open_clip) multi-modal embeddings to embed the images.
You can select different embedding model options (see results [here](https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_results.csv)).
The first time you run the app, it will automatically download the multimodal embedding model.
By default, LangChain will use an embedding model with moderate performance but lower memory requirments, `ViT-H-14`.
You can choose alternative `OpenCLIPEmbeddings` models in `rag_chroma_multi_modal/ingest.py`:
```
vectorstore_mmembd = Chroma(
collection_name="multi-modal-rag",
persist_directory=str(re_vectorstore_path),
embedding_function=OpenCLIPEmbeddings(
model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k"
),
)
```
## LLM
This template will use [Ollama](https://python.langchain.com/docs/integrations/chat/ollama#multi-modal).
Download the latest version of Ollama: https://ollama.ai/
Pull the an open source multi-modal LLM: e.g., https://ollama.ai/library/bakllava
```
ollama pull bakllava
```
The app is by default configured for `bakllava`. But you can change this in `chain.py` and `ingest.py` for different downloaded models.
## Usage
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
```
To create a new LangChain project and install this as the only package, you can do:
```shell
langchain app new my-app --package rag-chroma-multi-modal
```
If you want to add this to an existing project, you can just run:
```shell
langchain app add rag-chroma-multi-modal
```
And add the following code to your `server.py` file:
```python
from rag_chroma_multi_modal import chain as rag_chroma_multi_modal_chain
add_routes(app, rag_chroma_multi_modal_chain, path="/rag-chroma-multi-modal")
```
(Optional) Let's now configure LangSmith.
LangSmith will help us trace, monitor and debug LangChain applications.
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
If you don't have access, you can skip this section
```shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
```
If you are inside this directory, then you can spin up a LangServe instance directly by:
```shell
langchain serve
```
This will start the FastAPI app with a server is running locally at
[http://localhost:8000](http://localhost:8000)
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/rag-chroma-multi-modal/playground](http://127.0.0.1:8000/rag-chroma-multi-modal/playground)
We can access the template from code with:
```python
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-chroma-multi-modal")
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

View File

@ -0,0 +1,35 @@
import os
from pathlib import Path
from langchain.vectorstores import Chroma
from langchain_experimental.open_clip import OpenCLIPEmbeddings
# Load images
img_dump_path = Path(__file__).parent / "docs/"
rel_img_dump_path = img_dump_path.relative_to(Path.cwd())
image_uris = sorted(
[
os.path.join(rel_img_dump_path, image_name)
for image_name in os.listdir(rel_img_dump_path)
if image_name.endswith(".jpg")
]
)
# Index
vectorstore = Path(__file__).parent / "chroma_db_multi_modal"
re_vectorstore_path = vectorstore.relative_to(Path.cwd())
# Load embedding function
print("Loading embedding function")
embedding = OpenCLIPEmbeddings(model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k")
# Create chroma
vectorstore_mmembd = Chroma(
collection_name="multi-modal-rag",
persist_directory=str(Path(__file__).parent / "chroma_db_multi_modal"),
embedding_function=embedding,
)
# Add images
print("Embedding images")
vectorstore_mmembd.add_images(uris=image_uris)

3490
templates/rag-multi-modal-local/poetry.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,38 @@
[tool.poetry]
name = "rag-multi-modal-local"
version = "0.1.0"
description = "Multi-modal RAG using Chroma"
authors = [
"Lance Martin <lance@langchain.dev>",
]
readme = "README.md"
[tool.poetry.dependencies]
python = ">=3.8.1,<4.0"
langchain = ">=0.0.351"
openai = "<2"
tiktoken = ">=0.5.1"
chromadb = ">=0.4.14"
open-clip-torch = ">=2.23.0"
torch = ">=2.1.0"
langchain-experimental = "^0.0.43"
langchain-community = ">=0.0.4"
[tool.poetry.group.dev.dependencies]
langchain-cli = ">=0.0.15"
[tool.langserve]
export_module = "rag_multi_modal_local"
export_attr = "chain"
[tool.templates-hub]
use-case = "rag"
author = "LangChain"
integrations = ["Ollama", "Chroma"]
tags = ["multi-modal"]
[build-system]
requires = [
"poetry-core",
]
build-backend = "poetry.core.masonry.api"

View File

@ -0,0 +1,52 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "681a5d1e",
"metadata": {},
"source": [
"## Run Template\n",
"\n",
"In `server.py`, set -\n",
"```\n",
"add_routes(app, chain_rag_conv, path=\"/rag-multi-modal-local\")\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d774be2a",
"metadata": {},
"outputs": [],
"source": [
"from langserve.client import RemoteRunnable\n",
"\n",
"rag_app = RemoteRunnable(\"http://localhost:8001/rag-multi-modal-local\")\n",
"rag_app.invoke(\" < keywords here > \")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,3 @@
from rag_multi_modal_local.chain import chain
__all__ = ["chain"]

View File

@ -0,0 +1,122 @@
import base64
import io
from pathlib import Path
from langchain.chat_models import ChatOllama
from langchain.vectorstores import Chroma
from langchain_core.documents import Document
from langchain_core.messages import HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from langchain_experimental.open_clip import OpenCLIPEmbeddings
from PIL import Image
def resize_base64_image(base64_string, size=(128, 128)):
"""
Resize an image encoded as a Base64 string.
:param base64_string: A Base64 encoded string of the image to be resized.
:param size: A tuple representing the new size (width, height) for the image.
:return: A Base64 encoded string of the resized image.
"""
img_data = base64.b64decode(base64_string)
img = Image.open(io.BytesIO(img_data))
resized_img = img.resize(size, Image.LANCZOS)
buffered = io.BytesIO()
resized_img.save(buffered, format=img.format)
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def get_resized_images(docs):
"""
Resize images from base64-encoded strings.
:param docs: A list of base64-encoded image to be resized.
:return: Dict containing a list of resized base64-encoded strings.
"""
b64_images = []
for doc in docs:
if isinstance(doc, Document):
doc = doc.page_content
# Optional: re-size image
# resized_image = resize_base64_image(doc, size=(1280, 720))
b64_images.append(doc)
return {"images": b64_images}
def img_prompt_func(data_dict, num_images=1):
"""
GPT-4V prompt for image analysis.
:param data_dict: A dict with images and a user-provided question.
:param num_images: Number of images to include in the prompt.
:return: A list containing message objects for each image and the text prompt.
"""
messages = []
if data_dict["context"]["images"]:
for image in data_dict["context"]["images"][:num_images]:
image_message = {
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{image}",
}
messages.append(image_message)
text_message = {
"type": "text",
"text": (
"You are a helpful assistant that gives a description of food pictures.\n"
"Give a detailed summary of the image.\n"
"Give reccomendations for similar foods to try.\n"
),
}
messages.append(text_message)
return [HumanMessage(content=messages)]
def multi_modal_rag_chain(retriever):
"""
Multi-modal RAG chain,
:param retriever: A function that retrieves the necessary context for the model.
:return: A chain of functions representing the multi-modal RAG process.
"""
# Initialize the multi-modal Large Language Model with specific parameters
model = ChatOllama(model="bakllava", temperature=0)
# Define the RAG pipeline
chain = (
{
"context": retriever | RunnableLambda(get_resized_images),
"question": RunnablePassthrough(),
}
| RunnableLambda(img_prompt_func)
| model
| StrOutputParser()
)
return chain
# Load chroma
vectorstore_mmembd = Chroma(
collection_name="multi-modal-rag",
persist_directory=str(Path(__file__).parent.parent / "chroma_db_multi_modal"),
embedding_function=OpenCLIPEmbeddings(
model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k"
),
)
# Make retriever
retriever_mmembd = vectorstore_mmembd.as_retriever()
# Create RAG chain
chain = multi_modal_rag_chain(retriever_mmembd)
# Add typing for input
class Question(BaseModel):
__root__: str
chain = chain.with_types(input_type=Question)

View File

@ -0,0 +1,3 @@
docs/img_*.jpg
chroma_db_multi_modal
multi_vector_retriever_metadata

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2023 LangChain, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,118 @@
# rag-multi-modal-mv-local
Visual search is a famililar application to many with iPhones or Android devices: use natural language to search across your photo collection.
With the release of open source, multi-modal LLMs it's possible to build this kind of application for yourself and have it run on your personal laptop.
This template demonstrates how to perform visual search and question-answering over a collection of photos.
Given a set of photos, it will produce image summaries and index them, retrieve photos relevant to user question using the summaries, and use Ollama to run a local, open-source multi-modal LLM to answer questions about the retrieved photos.
## Input
Supply a set of photos in the `/docs` directory.
By default, this template has a toy collection of 3 food pictures.
The app will look up and summarize photos based upon provided keywords or questions:
```
What kind of ice cream did I have?
```
In practice, a larger corpus of images can be tested.
To create an index of the images, run:
```
poetry install
python ingest.py
```
## Storage
Here is the process the template will use to create an index of the slides (see [blog](https://blog.langchain.dev/multi-modal-rag-template/)):
* Given a set of images
* It uses a local multi-modal LLM ([bakllava](https://ollama.ai/library/bakllava)) to summarize each image
* Embeds the image summaries with a link to the original images
* Given a user question, it will relevant image(s) based on similarity between the image summary and user input (using Ollama embeddings)
* It will pass those images to bakllava for answer synthesis
By default, this will use [LocalFileStore](https://python.langchain.com/docs/integrations/stores/file_system) to store images and Chroma to store summaries.
## LLM and Embedding Models
We will use [Ollama](https://python.langchain.com/docs/integrations/chat/ollama#multi-modal) for generating image summaries, embeddings, and the final image QA.
Download the latest version of Ollama: https://ollama.ai/
Pull an open source multi-modal LLM: e.g., https://ollama.ai/library/bakllava
Pull an open source embedding model: e.g., https://ollama.ai/library/llama2:7b
```
ollama pull bakllava
ollama pull llama2:7b
```
The app is by default configured for `bakllava`. But you can change this in `chain.py` and `ingest.py` for different downloaded models.
The app will retrieve images based on similarity between the text input and the image summary, and pass the images to `bakllava`.
## Usage
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
```
To create a new LangChain project and install this as the only package, you can do:
```shell
langchain app new my-app --package rag-multi-modal-mv-local
```
If you want to add this to an existing project, you can just run:
```shell
langchain app add rag-multi-modal-mv-local
```
And add the following code to your `server.py` file:
```python
from rag_multi_modal_mv_local import chain as rag_multi_modal_mv_local_chain
add_routes(app, rag_multi_modal_mv_local_chain, path="/rag-multi-modal-mv-local")
```
(Optional) Let's now configure LangSmith.
LangSmith will help us trace, monitor and debug LangChain applications.
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
If you don't have access, you can skip this section
```shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
```
If you are inside this directory, then you can spin up a LangServe instance directly by:
```shell
langchain serve
```
This will start the FastAPI app with a server is running locally at
[http://localhost:8000](http://localhost:8000)
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/rag-multi-modal-mv-local/playground](http://127.0.0.1:8000/rag-multi-modal-mv-local/playground)
We can access the template from code with:
```python
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-multi-modal-mv-local")
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

View File

@ -0,0 +1,192 @@
import base64
import io
import os
import uuid
from io import BytesIO
from pathlib import Path
from langchain.chat_models import ChatOllama
from langchain.embeddings import OllamaEmbeddings
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.schema.document import Document
from langchain.schema.messages import HumanMessage
from langchain.storage import LocalFileStore
from langchain.vectorstores import Chroma
from PIL import Image
def image_summarize(img_base64, prompt):
"""
Make image summary
:param img_base64: Base64 encoded string for image
:param prompt: Text prompt for summarizatiomn
:return: Image summarization prompt
"""
chat = ChatOllama(model="bakllava", temperature=0)
msg = chat.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{img_base64}",
},
]
)
]
)
return msg.content
def generate_img_summaries(img_base64_list):
"""
Generate summaries for images
:param img_base64_list: Base64 encoded images
:return: List of image summaries and processed images
"""
# Store image summaries
image_summaries = []
processed_images = []
# Prompt
prompt = """Give a detailed summary of the image."""
# Apply summarization to images
for i, base64_image in enumerate(img_base64_list):
try:
image_summaries.append(image_summarize(base64_image, prompt))
processed_images.append(base64_image)
except Exception as e:
print(f"Error with image {i+1}: {e}")
return image_summaries, processed_images
def get_images(img_path):
"""
Extract images.
:param img_path: A string representing the path to the images.
"""
# Get image URIs
pil_images = [
Image.open(os.path.join(img_path, image_name))
for image_name in os.listdir(img_path)
if image_name.endswith(".jpg")
]
return pil_images
def resize_base64_image(base64_string, size=(128, 128)):
"""
Resize an image encoded as a Base64 string
:param base64_string: Base64 string
:param size: Image size
:return: Re-sized Base64 string
"""
# Decode the Base64 string
img_data = base64.b64decode(base64_string)
img = Image.open(io.BytesIO(img_data))
# Resize the image
resized_img = img.resize(size, Image.LANCZOS)
# Save the resized image to a bytes buffer
buffered = io.BytesIO()
resized_img.save(buffered, format=img.format)
# Encode the resized image to Base64
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def convert_to_base64(pil_image):
"""
Convert PIL images to Base64 encoded strings
:param pil_image: PIL image
:return: Re-sized Base64 string
"""
buffered = BytesIO()
pil_image.save(buffered, format="JPEG") # You can change the format if needed
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
# img_str = resize_base64_image(img_str, size=(831,623))
return img_str
def create_multi_vector_retriever(vectorstore, image_summaries, images):
"""
Create retriever that indexes summaries, but returns raw images or texts
:param vectorstore: Vectorstore to store embedded image sumamries
:param image_summaries: Image summaries
:param images: Base64 encoded images
:return: Retriever
"""
# Initialize the storage layer for images
store = LocalFileStore(
str(Path(__file__).parent / "multi_vector_retriever_metadata")
)
id_key = "doc_id"
# Create the multi-vector retriever
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
byte_store=store,
id_key=id_key,
)
# Helper function to add documents to the vectorstore and docstore
def add_documents(retriever, doc_summaries, doc_contents):
doc_ids = [str(uuid.uuid4()) for _ in doc_contents]
summary_docs = [
Document(page_content=s, metadata={id_key: doc_ids[i]})
for i, s in enumerate(doc_summaries)
]
retriever.vectorstore.add_documents(summary_docs)
retriever.docstore.mset(list(zip(doc_ids, doc_contents)))
add_documents(retriever, image_summaries, images)
return retriever
# Load images
doc_path = Path(__file__).parent / "docs/"
rel_doc_path = doc_path.relative_to(Path.cwd())
print("Read images")
pil_images = get_images(rel_doc_path)
# Convert to b64
images_base_64 = [convert_to_base64(i) for i in pil_images]
# Image summaries
print("Generate image summaries")
image_summaries, images_base_64_processed = generate_img_summaries(images_base_64)
# The vectorstore to use to index the images summaries
vectorstore_mvr = Chroma(
collection_name="image_summaries",
persist_directory=str(Path(__file__).parent / "chroma_db_multi_modal"),
embedding_function=OllamaEmbeddings(model="llama2:7b"),
)
# Create documents
images_base_64_processed_documents = [
Document(page_content=i) for i in images_base_64_processed
]
# Create retriever
retriever_multi_vector_img = create_multi_vector_retriever(
vectorstore_mvr,
image_summaries,
images_base_64_processed_documents,
)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,38 @@
[tool.poetry]
name = "rag-multi-modal-mv-local"
version = "0.1.0"
description = "Multi-modal RAG using Chroma and multi-vector retriever"
authors = [
"Lance Martin <lance@langchain.dev>",
]
readme = "README.md"
[tool.poetry.dependencies]
python = ">=3.8.1,<4.0"
langchain = ">=0.0.351"
openai = "<2"
tiktoken = ">=0.5.1"
chromadb = ">=0.4.14"
pypdfium2 = ">=4.20.0"
langchain-experimental = "^0.0.43"
pillow = ">=10.1.0"
langchain-community = ">=0.0.4"
[tool.poetry.group.dev.dependencies]
langchain-cli = ">=0.0.15"
[tool.langserve]
export_module = "rag_multi_modal_mv_local"
export_attr = "chain"
[tool.templates-hub]
use-case = "rag"
author = "LangChain"
integrations = ["Ollama", "Chroma"]
tags = ["multi-modal"]
[build-system]
requires = [
"poetry-core",
]
build-backend = "poetry.core.masonry.api"

View File

@ -0,0 +1,52 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "681a5d1e",
"metadata": {},
"source": [
"## Run Template\n",
"\n",
"In `server.py`, set -\n",
"```\n",
"add_routes(app, chain_rag_conv, path=\"/rag-multi-modal-mv-local\")\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d774be2a",
"metadata": {},
"outputs": [],
"source": [
"from langserve.client import RemoteRunnable\n",
"\n",
"rag_app = RemoteRunnable(\"http://localhost:8001/rag-multi-modal-mv-local\")\n",
"rag_app.invoke(\" < keywords here > \")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,3 @@
from rag_multi_modal_mv_local.chain import chain
__all__ = ["chain"]

View File

@ -0,0 +1,131 @@
import base64
import io
from pathlib import Path
from langchain.chat_models import ChatOllama
from langchain.embeddings import OllamaEmbeddings
from langchain.pydantic_v1 import BaseModel
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.schema.document import Document
from langchain.schema.messages import HumanMessage
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
from langchain.storage import LocalFileStore
from langchain.vectorstores import Chroma
from PIL import Image
def resize_base64_image(base64_string, size=(128, 128)):
"""
Resize an image encoded as a Base64 string.
:param base64_string: A Base64 encoded string of the image to be resized.
:param size: A tuple representing the new size (width, height) for the image.
:return: A Base64 encoded string of the resized image.
"""
img_data = base64.b64decode(base64_string)
img = Image.open(io.BytesIO(img_data))
resized_img = img.resize(size, Image.LANCZOS)
buffered = io.BytesIO()
resized_img.save(buffered, format=img.format)
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def get_resized_images(docs):
"""
Resize images from base64-encoded strings.
:param docs: A list of base64-encoded image to be resized.
:return: Dict containing a list of resized base64-encoded strings.
"""
b64_images = []
for doc in docs:
if isinstance(doc, Document):
doc = doc.page_content
# Optional: re-size image
# resized_image = resize_base64_image(doc, size=(1280, 720))
b64_images.append(doc)
return {"images": b64_images}
def img_prompt_func(data_dict, num_images=1):
"""
Ollama prompt for image analysis.
:param data_dict: A dict with images and a user-provided question.
:param num_images: Number of images to include in the prompt.
:return: A list containing message objects for each image and the text prompt.
"""
messages = []
if data_dict["context"]["images"]:
for image in data_dict["context"]["images"][:num_images]:
image_message = {
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{image}",
}
messages.append(image_message)
text_message = {
"type": "text",
"text": (
"You are a helpful assistant that gives a description of food pictures.\n"
"Give a detailed summary of the image.\n"
),
}
messages.append(text_message)
return [HumanMessage(content=messages)]
def multi_modal_rag_chain(retriever):
"""
Multi-modal RAG chain,
:param retriever: A function that retrieves the necessary context for the model.
:return: A chain of functions representing the multi-modal RAG process.
"""
# Initialize the multi-modal Large Language Model with specific parameters
model = ChatOllama(model="bakllava", temperature=0)
# Define the RAG pipeline
chain = (
{
"context": retriever | RunnableLambda(get_resized_images),
"question": RunnablePassthrough(),
}
| RunnableLambda(img_prompt_func)
| model
| StrOutputParser()
)
return chain
# Load chroma
vectorstore_mvr = Chroma(
collection_name="image_summaries",
persist_directory=str(Path(__file__).parent.parent / "chroma_db_multi_modal"),
embedding_function=OllamaEmbeddings(model="llama2:7b"),
)
# Load file store
store = LocalFileStore(
str(Path(__file__).parent.parent / "multi_vector_retriever_metadata")
)
id_key = "doc_id"
# Create the multi-vector retriever
retriever = MultiVectorRetriever(
vectorstore=vectorstore_mvr,
byte_store=store,
id_key=id_key,
)
# Create RAG chain
chain = multi_modal_rag_chain(retriever)
# Add typing for input
class Question(BaseModel):
__root__: str
chain = chain.with_types(input_type=Question)