mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-29 11:09:07 +00:00
Update DeepSparse LLM (#11236)
**Description:** Adds streaming and many more sampling parameters to the DeepSparse interface --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
parent
f91ce4eddf
commit
33eb5f8300
@ -1,25 +1,25 @@
|
||||
# flake8: noqa
|
||||
from typing import Any, Dict, Optional, List
|
||||
|
||||
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union
|
||||
from langchain.pydantic_v1 import root_validator
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain.callbacks.manager import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain.llms.base import LLM
|
||||
from langchain.llms.utils import enforce_stop_tokens
|
||||
from langchain.schema.output import GenerationChunk
|
||||
|
||||
|
||||
class DeepSparse(LLM):
|
||||
"""Neural Magic DeepSparse LLM interface.
|
||||
|
||||
To use, you should have the ``deepsparse`` or ``deepsparse-nightly``
|
||||
python package installed. See https://github.com/neuralmagic/deepsparse
|
||||
|
||||
This interface let's you deploy optimized LLMs straight from the
|
||||
[SparseZoo](https://sparsezoo.neuralmagic.com/?useCase=text_generation)
|
||||
Example:
|
||||
.. code-block:: python
|
||||
from langchain.llms import DeepSparse
|
||||
llm = DeepSparse(model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none")
|
||||
llm = DeepSparse(model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none")
|
||||
""" # noqa: E501
|
||||
|
||||
pipeline: Any #: :meta private:
|
||||
@ -27,15 +27,27 @@ class DeepSparse(LLM):
|
||||
model: str
|
||||
"""The path to a model file or directory or the name of a SparseZoo model stub."""
|
||||
|
||||
config: Optional[Dict[str, Any]] = None
|
||||
"""Key word arguments passed to the pipeline."""
|
||||
model_config: Optional[Dict[str, Any]] = None
|
||||
"""Key word arguments passed to the pipeline construction.
|
||||
Common parameters are sequence_length, prompt_sequence_length"""
|
||||
|
||||
generation_config: Union[None, str, Dict] = None
|
||||
"""GenerationConfig dictionary consisting of parameters used to control
|
||||
sequences generated for each prompt. Common parameters are:
|
||||
max_length, max_new_tokens, num_return_sequences, output_scores,
|
||||
top_p, top_k, repetition_penalty."""
|
||||
|
||||
streaming: bool = False
|
||||
"""Whether to stream the results, token by token."""
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {
|
||||
"model": self.model,
|
||||
"config": self.config,
|
||||
"model_config": self.model_config,
|
||||
"generation_config": self.generation_config,
|
||||
"streaming": self.streaming,
|
||||
}
|
||||
|
||||
@property
|
||||
@ -54,12 +66,12 @@ class DeepSparse(LLM):
|
||||
"Please install it with `pip install deepsparse`"
|
||||
)
|
||||
|
||||
config = values["config"] or {}
|
||||
model_config = values["model_config"] or {}
|
||||
|
||||
values["pipeline"] = Pipeline.create(
|
||||
task="text_generation",
|
||||
model_path=values["model"],
|
||||
**config,
|
||||
**model_config,
|
||||
)
|
||||
return values
|
||||
|
||||
@ -78,10 +90,143 @@ class DeepSparse(LLM):
|
||||
The generated text.
|
||||
Example:
|
||||
.. code-block:: python
|
||||
response = llm("Tell me a joke.")
|
||||
from langchain.llms import DeepSparse
|
||||
llm = DeepSparse(model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none")
|
||||
llm("Tell me a joke.")
|
||||
"""
|
||||
text = self.pipeline(sequences=prompt).sequences[0]
|
||||
if self.streaming:
|
||||
combined_output = ""
|
||||
for chunk in self._stream(
|
||||
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
|
||||
):
|
||||
combined_output += chunk.text
|
||||
text = combined_output
|
||||
else:
|
||||
text = (
|
||||
self.pipeline(
|
||||
sequences=prompt, generation_config=self.generation_config
|
||||
)
|
||||
.generations[0]
|
||||
.text
|
||||
)
|
||||
|
||||
if stop is not None:
|
||||
text = enforce_stop_tokens(text, stop)
|
||||
return "".join(text)
|
||||
|
||||
return text
|
||||
|
||||
async def _acall(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Generate text from a prompt.
|
||||
Args:
|
||||
prompt: The prompt to generate text from.
|
||||
stop: A list of strings to stop generation when encountered.
|
||||
Returns:
|
||||
The generated text.
|
||||
Example:
|
||||
.. code-block:: python
|
||||
from langchain.llms import DeepSparse
|
||||
llm = DeepSparse(model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none")
|
||||
llm("Tell me a joke.")
|
||||
"""
|
||||
if self.streaming:
|
||||
combined_output = ""
|
||||
async for chunk in self._astream(
|
||||
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
|
||||
):
|
||||
combined_output += chunk.text
|
||||
text = combined_output
|
||||
else:
|
||||
text = (
|
||||
self.pipeline(
|
||||
sequences=prompt, generation_config=self.generation_config
|
||||
)
|
||||
.generations[0]
|
||||
.text
|
||||
)
|
||||
|
||||
if stop is not None:
|
||||
text = enforce_stop_tokens(text, stop)
|
||||
|
||||
return text
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[GenerationChunk]:
|
||||
"""Yields results objects as they are generated in real time.
|
||||
It also calls the callback manager's on_llm_new_token event with
|
||||
similar parameters to the OpenAI LLM class method of the same name.
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
stop: Optional list of stop words to use when generating.
|
||||
Returns:
|
||||
A generator representing the stream of tokens being generated.
|
||||
Yields:
|
||||
A dictionary like object containing a string token.
|
||||
Example:
|
||||
.. code-block:: python
|
||||
from langchain.llms import DeepSparse
|
||||
llm = DeepSparse(
|
||||
model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none",
|
||||
streaming=True
|
||||
)
|
||||
for chunk in llm.stream("Tell me a joke",
|
||||
stop=["'","\n"]):
|
||||
print(chunk, end='', flush=True)
|
||||
"""
|
||||
inference = self.pipeline(
|
||||
sequences=prompt, generation_config=self.generation_config, streaming=True
|
||||
)
|
||||
for token in inference:
|
||||
chunk = GenerationChunk(text=token.generations[0].text)
|
||||
yield chunk
|
||||
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(token=chunk.text)
|
||||
|
||||
async def _astream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[GenerationChunk]:
|
||||
"""Yields results objects as they are generated in real time.
|
||||
It also calls the callback manager's on_llm_new_token event with
|
||||
similar parameters to the OpenAI LLM class method of the same name.
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
stop: Optional list of stop words to use when generating.
|
||||
Returns:
|
||||
A generator representing the stream of tokens being generated.
|
||||
Yields:
|
||||
A dictionary like object containing a string token.
|
||||
Example:
|
||||
.. code-block:: python
|
||||
from langchain.llms import DeepSparse
|
||||
llm = DeepSparse(
|
||||
model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none",
|
||||
streaming=True
|
||||
)
|
||||
for chunk in llm.stream("Tell me a joke",
|
||||
stop=["'","\n"]):
|
||||
print(chunk, end='', flush=True)
|
||||
"""
|
||||
inference = self.pipeline(
|
||||
sequences=prompt, generation_config=self.generation_config, streaming=True
|
||||
)
|
||||
for token in inference:
|
||||
chunk = GenerationChunk(text=token.generations[0].text)
|
||||
yield chunk
|
||||
|
||||
if run_manager:
|
||||
await run_manager.on_llm_new_token(token=chunk.text)
|
||||
|
Loading…
Reference in New Issue
Block a user