core[minor]: moved fake llms and embeddings to core (#19226)

- [ ] **PR title**: "core: moved fake llms and embeddings to core"


- [ ] **PR message**:
 - **Description:** moved fake llms and embeddings to core"
This commit is contained in:
Leonid Kuligin
2024-03-18 18:01:26 +01:00
committed by GitHub
parent 514fe80778
commit 366ba77459
24 changed files with 392 additions and 351 deletions

View File

@@ -0,0 +1,4 @@
from langchain_core.embeddings.embeddings import Embeddings
from langchain_core.embeddings.fake import DeterministicFakeEmbedding, FakeEmbeddings
__all__ = ["DeterministicFakeEmbedding", "Embeddings", "FakeEmbeddings"]

View File

@@ -0,0 +1,25 @@
"""**Embeddings** interface."""
from abc import ABC, abstractmethod
from typing import List
from langchain_core.runnables.config import run_in_executor
class Embeddings(ABC):
"""Interface for embedding models."""
@abstractmethod
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs."""
@abstractmethod
def embed_query(self, text: str) -> List[float]:
"""Embed query text."""
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
"""Asynchronous Embed search docs."""
return await run_in_executor(None, self.embed_documents, texts)
async def aembed_query(self, text: str) -> List[float]:
"""Asynchronous Embed query text."""
return await run_in_executor(None, self.embed_query, text)

View File

@@ -0,0 +1,52 @@
import hashlib
from typing import List
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel
class FakeEmbeddings(Embeddings, BaseModel):
"""Fake embedding model."""
size: int
"""The size of the embedding vector."""
def _get_embedding(self) -> List[float]:
import numpy as np # type: ignore[import-not-found, import-untyped]
return list(np.random.normal(size=self.size))
def embed_documents(self, texts: List[str]) -> List[List[float]]:
return [self._get_embedding() for _ in texts]
def embed_query(self, text: str) -> List[float]:
return self._get_embedding()
class DeterministicFakeEmbedding(Embeddings, BaseModel):
"""
Fake embedding model that always returns
the same embedding vector for the same text.
"""
size: int
"""The size of the embedding vector."""
def _get_embedding(self, seed: int) -> List[float]:
import numpy as np # type: ignore[import-not-found, import-untyped]
# set the seed for the random generator
np.random.seed(seed)
return list(np.random.normal(size=self.size))
def _get_seed(self, text: str) -> int:
"""
Get a seed for the random generator, using the hash of the text.
"""
return int(hashlib.sha256(text.encode("utf-8")).hexdigest(), 16) % 10**8
def embed_documents(self, texts: List[str]) -> List[List[float]]:
return [self._get_embedding(seed=self._get_seed(_)) for _ in texts]
def embed_query(self, text: str) -> List[float]:
return self._get_embedding(seed=self._get_seed(text))