community: remove sambaverse (#26265)

removing Sambaverse llm model and references given is not available
after Sep/10/2024

<img width="1781" alt="image"
src="https://github.com/user-attachments/assets/4dcdb5f7-5264-4a03-b8e5-95c88304e059">
This commit is contained in:
Jorge Piedrahita Ortiz 2024-09-19 08:56:30 -05:00 committed by GitHub
parent 3fc0ea510e
commit 37b72023fe
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 8 additions and 606 deletions

View File

@ -6,129 +6,11 @@
"source": [
"# SambaNova\n",
"\n",
"**[SambaNova](https://sambanova.ai/)'s** [Sambaverse](https://sambaverse.sambanova.ai/) and [Sambastudio](https://sambanova.ai/technology/full-stack-ai-platform) are platforms for running your own open-source models\n",
"**[SambaNova](https://sambanova.ai/)'s** [Sambastudio](https://sambanova.ai/technology/full-stack-ai-platform) is a platform for running your own open-source models\n",
"\n",
"This example goes over how to use LangChain to interact with SambaNova models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sambaverse"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Sambaverse** allows you to interact with multiple open-source models. You can view the list of available models and interact with them in the [playground](https://sambaverse.sambanova.ai/playground).\n",
" **Please note that Sambaverse's free offering is performance-limited.** Companies that are ready to evaluate the production tokens-per-second performance, volume throughput, and 10x lower total cost of ownership (TCO) of SambaNova should [contact us](https://sambaverse.sambanova.ai/contact-us) for a non-limited evaluation instance."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"An API key is required to access Sambaverse models. To get a key, create an account at [sambaverse.sambanova.ai](https://sambaverse.sambanova.ai/)\n",
"\n",
"The [sseclient-py](https://pypi.org/project/sseclient-py/) package is required to run streaming predictions "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --quiet sseclient-py==1.8.0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Register your API key as an environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"sambaverse_api_key = \"<Your sambaverse API key>\"\n",
"\n",
"# Set the environment variables\n",
"os.environ[\"SAMBAVERSE_API_KEY\"] = sambaverse_api_key"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call Sambaverse models directly from LangChain!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms.sambanova import Sambaverse\n",
"\n",
"llm = Sambaverse(\n",
" sambaverse_model_name=\"Meta/llama-2-7b-chat-hf\",\n",
" streaming=False,\n",
" model_kwargs={\n",
" \"do_sample\": True,\n",
" \"max_tokens_to_generate\": 1000,\n",
" \"temperature\": 0.01,\n",
" \"select_expert\": \"llama-2-7b-chat-hf\",\n",
" \"process_prompt\": False,\n",
" # \"stop_sequences\": '\\\"sequence1\\\",\\\"sequence2\\\"',\n",
" # \"repetition_penalty\": 1.0,\n",
" # \"top_k\": 50,\n",
" # \"top_p\": 1.0\n",
" },\n",
")\n",
"\n",
"print(llm.invoke(\"Why should I use open source models?\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Streaming response\n",
"\n",
"from langchain_community.llms.sambanova import Sambaverse\n",
"\n",
"llm = Sambaverse(\n",
" sambaverse_model_name=\"Meta/llama-2-7b-chat-hf\",\n",
" streaming=True,\n",
" model_kwargs={\n",
" \"do_sample\": True,\n",
" \"max_tokens_to_generate\": 1000,\n",
" \"temperature\": 0.01,\n",
" \"select_expert\": \"llama-2-7b-chat-hf\",\n",
" \"process_prompt\": False,\n",
" # \"stop_sequences\": '\\\"sequence1\\\",\\\"sequence2\\\"',\n",
" # \"repetition_penalty\": 1.0,\n",
" # \"top_k\": 50,\n",
" # \"top_p\": 1.0\n",
" },\n",
")\n",
"\n",
"for chunk in llm.stream(\"Why should I use open source models?\"):\n",
" print(chunk, end=\"\", flush=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@ -510,12 +510,6 @@ def _import_sagemaker_endpoint() -> Type[BaseLLM]:
return SagemakerEndpoint
def _import_sambaverse() -> Type[BaseLLM]:
from langchain_community.llms.sambanova import Sambaverse
return Sambaverse
def _import_sambastudio() -> Type[BaseLLM]:
from langchain_community.llms.sambanova import SambaStudio
@ -817,8 +811,6 @@ def __getattr__(name: str) -> Any:
return _import_rwkv()
elif name == "SagemakerEndpoint":
return _import_sagemaker_endpoint()
elif name == "Sambaverse":
return _import_sambaverse()
elif name == "SambaStudio":
return _import_sambastudio()
elif name == "SelfHostedPipeline":
@ -954,7 +946,6 @@ __all__ = [
"RWKV",
"Replicate",
"SagemakerEndpoint",
"Sambaverse",
"SambaStudio",
"SelfHostedHuggingFaceLLM",
"SelfHostedPipeline",
@ -1051,7 +1042,6 @@ def get_type_to_cls_dict() -> Dict[str, Callable[[], Type[BaseLLM]]]:
"replicate": _import_replicate,
"rwkv": _import_rwkv,
"sagemaker_endpoint": _import_sagemaker_endpoint,
"sambaverse": _import_sambaverse,
"sambastudio": _import_sambastudio,
"self_hosted": _import_self_hosted,
"self_hosted_hugging_face": _import_self_hosted_hugging_face,

View File

@ -9,464 +9,6 @@ from langchain_core.utils import get_from_dict_or_env, pre_init
from pydantic import ConfigDict
class SVEndpointHandler:
"""
SambaNova Systems Interface for Sambaverse endpoint.
:param str host_url: Base URL of the DaaS API service
"""
API_BASE_PATH: str = "/api/predict"
def __init__(self, host_url: str):
"""
Initialize the SVEndpointHandler.
:param str host_url: Base URL of the DaaS API service
"""
self.host_url = host_url
self.http_session = requests.Session()
@staticmethod
def _process_response(response: requests.Response) -> Dict:
"""
Processes the API response and returns the resulting dict.
All resulting dicts, regardless of success or failure, will contain the
`status_code` key with the API response status code.
If the API returned an error, the resulting dict will contain the key
`detail` with the error message.
If the API call was successful, the resulting dict will contain the key
`data` with the response data.
:param requests.Response response: the response object to process
:return: the response dict
:type: dict
"""
result: Dict[str, Any] = {}
try:
lines_result = response.text.strip().split("\n")
text_result = lines_result[-1]
if response.status_code == 200 and json.loads(text_result).get("error"):
completion = ""
for line in lines_result[:-1]:
completion += json.loads(line)["result"]["responses"][0][
"stream_token"
]
text_result = lines_result[-2]
result = json.loads(text_result)
result["result"]["responses"][0]["completion"] = completion
else:
result = json.loads(text_result)
except Exception as e:
result["detail"] = str(e)
if "status_code" not in result:
result["status_code"] = response.status_code
return result
@staticmethod
def _process_streaming_response(
response: requests.Response,
) -> Generator[Dict, None, None]:
"""Process the streaming response"""
try:
for line in response.iter_lines():
chunk = json.loads(line)
if "status_code" not in chunk:
chunk["status_code"] = response.status_code
if chunk["status_code"] == 200 and chunk.get("error"):
chunk["result"] = {"responses": [{"stream_token": ""}]}
return chunk
yield chunk
except Exception as e:
raise RuntimeError(f"Error processing streaming response: {e}")
def _get_full_url(self) -> str:
"""
Return the full API URL for a given path.
:returns: the full API URL for the sub-path
:type: str
"""
return f"{self.host_url}{self.API_BASE_PATH}"
def nlp_predict(
self,
key: str,
sambaverse_model_name: Optional[str],
input: Union[List[str], str],
params: Optional[str] = "",
stream: bool = False,
) -> Dict:
"""
NLP predict using inline input string.
:param str project: Project ID in which the endpoint exists
:param str endpoint: Endpoint ID
:param str key: API Key
:param str input_str: Input string
:param str params: Input params string
:returns: Prediction results
:type: dict
"""
if params:
data = {"instance": input, "params": json.loads(params)}
else:
data = {"instance": input}
response = self.http_session.post(
self._get_full_url(),
headers={
"key": key,
"Content-Type": "application/json",
"modelName": sambaverse_model_name,
},
json=data,
)
return SVEndpointHandler._process_response(response)
def nlp_predict_stream(
self,
key: str,
sambaverse_model_name: Optional[str],
input: Union[List[str], str],
params: Optional[str] = "",
) -> Iterator[Dict]:
"""
NLP predict using inline input string.
:param str project: Project ID in which the endpoint exists
:param str endpoint: Endpoint ID
:param str key: API Key
:param str input_str: Input string
:param str params: Input params string
:returns: Prediction results
:type: dict
"""
if params:
data = {"instance": input, "params": json.loads(params)}
else:
data = {"instance": input}
# Streaming output
response = self.http_session.post(
self._get_full_url(),
headers={
"key": key,
"Content-Type": "application/json",
"modelName": sambaverse_model_name,
},
json=data,
stream=True,
)
for chunk in SVEndpointHandler._process_streaming_response(response):
yield chunk
class Sambaverse(LLM):
"""
Sambaverse large language models.
To use, you should have the environment variable ``SAMBAVERSE_API_KEY``
set with your API key.
get one in https://sambaverse.sambanova.ai
read extra documentation in https://docs.sambanova.ai/sambaverse/latest/index.html
Example:
.. code-block:: python
from langchain_community.llms.sambanova import Sambaverse
Sambaverse(
sambaverse_url="https://sambaverse.sambanova.ai",
sambaverse_api_key="your-sambaverse-api-key",
sambaverse_model_name="Meta/llama-2-7b-chat-hf",
streaming: = False
model_kwargs={
"select_expert": "llama-2-7b-chat-hf",
"do_sample": False,
"max_tokens_to_generate": 100,
"temperature": 0.7,
"top_p": 1.0,
"repetition_penalty": 1.0,
"top_k": 50,
"process_prompt": False
},
)
"""
sambaverse_url: str = ""
"""Sambaverse url to use"""
sambaverse_api_key: str = ""
"""sambaverse api key"""
sambaverse_model_name: Optional[str] = None
"""sambaverse expert model to use"""
model_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model."""
streaming: Optional[bool] = False
"""Streaming flag to get streamed response."""
model_config = ConfigDict(
extra="forbid",
)
@classmethod
def is_lc_serializable(cls) -> bool:
return True
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key exists in environment."""
values["sambaverse_url"] = get_from_dict_or_env(
values,
"sambaverse_url",
"SAMBAVERSE_URL",
default="https://sambaverse.sambanova.ai",
)
values["sambaverse_api_key"] = get_from_dict_or_env(
values, "sambaverse_api_key", "SAMBAVERSE_API_KEY"
)
values["sambaverse_model_name"] = get_from_dict_or_env(
values, "sambaverse_model_name", "SAMBAVERSE_MODEL_NAME"
)
return values
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model_kwargs": self.model_kwargs}}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "Sambaverse LLM"
def _get_tuning_params(self, stop: Optional[List[str]]) -> str:
"""
Get the tuning parameters to use when calling the LLM.
Args:
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of the stop substrings.
Returns:
The tuning parameters as a JSON string.
"""
_model_kwargs = self.model_kwargs or {}
_kwarg_stop_sequences = _model_kwargs.get("stop_sequences", [])
_stop_sequences = stop or _kwarg_stop_sequences
if not _kwarg_stop_sequences:
_model_kwargs["stop_sequences"] = ",".join(
f'"{x}"' for x in _stop_sequences
)
tuning_params_dict = {
k: {"type": type(v).__name__, "value": str(v)}
for k, v in (_model_kwargs.items())
}
_model_kwargs["stop_sequences"] = _kwarg_stop_sequences
tuning_params = json.dumps(tuning_params_dict)
return tuning_params
def _handle_nlp_predict(
self,
sdk: SVEndpointHandler,
prompt: Union[List[str], str],
tuning_params: str,
) -> str:
"""
Perform an NLP prediction using the Sambaverse endpoint handler.
Args:
sdk: The SVEndpointHandler to use for the prediction.
prompt: The prompt to use for the prediction.
tuning_params: The tuning parameters to use for the prediction.
Returns:
The prediction result.
Raises:
ValueError: If the prediction fails.
"""
response = sdk.nlp_predict(
self.sambaverse_api_key, self.sambaverse_model_name, prompt, tuning_params
)
if response["status_code"] != 200:
error = response.get("error")
if error:
optional_code = error.get("code")
optional_details = error.get("details")
optional_message = error.get("message")
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response['status_code']}.\n"
f"Message: {optional_message}\n"
f"Details: {optional_details}\n"
f"Code: {optional_code}\n"
)
else:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response['status_code']}."
f"{response}."
)
return response["result"]["responses"][0]["completion"]
def _handle_completion_requests(
self, prompt: Union[List[str], str], stop: Optional[List[str]]
) -> str:
"""
Perform a prediction using the Sambaverse endpoint handler.
Args:
prompt: The prompt to use for the prediction.
stop: stop sequences.
Returns:
The prediction result.
Raises:
ValueError: If the prediction fails.
"""
ss_endpoint = SVEndpointHandler(self.sambaverse_url)
tuning_params = self._get_tuning_params(stop)
return self._handle_nlp_predict(ss_endpoint, prompt, tuning_params)
def _handle_nlp_predict_stream(
self, sdk: SVEndpointHandler, prompt: Union[List[str], str], tuning_params: str
) -> Iterator[GenerationChunk]:
"""
Perform a streaming request to the LLM.
Args:
sdk: The SVEndpointHandler to use for the prediction.
prompt: The prompt to use for the prediction.
tuning_params: The tuning parameters to use for the prediction.
Returns:
An iterator of GenerationChunks.
"""
for chunk in sdk.nlp_predict_stream(
self.sambaverse_api_key, self.sambaverse_model_name, prompt, tuning_params
):
if chunk["status_code"] != 200:
error = chunk.get("error")
if error:
optional_code = error.get("code")
optional_details = error.get("details")
optional_message = error.get("message")
raise ValueError(
f"Sambanova /complete call failed with status code "
f"{chunk['status_code']}.\n"
f"Message: {optional_message}\n"
f"Details: {optional_details}\n"
f"Code: {optional_code}\n"
)
else:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{chunk['status_code']}."
f"{chunk}."
)
text = chunk["result"]["responses"][0]["stream_token"]
generated_chunk = GenerationChunk(text=text)
yield generated_chunk
def _stream(
self,
prompt: Union[List[str], str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Stream the Sambaverse's LLM on the given prompt.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
run_manager: Callback manager for the run.
kwargs: Additional keyword arguments. directly passed
to the sambaverse model in API call.
Returns:
An iterator of GenerationChunks.
"""
ss_endpoint = SVEndpointHandler(self.sambaverse_url)
tuning_params = self._get_tuning_params(stop)
try:
if self.streaming:
for chunk in self._handle_nlp_predict_stream(
ss_endpoint, prompt, tuning_params
):
if run_manager:
run_manager.on_llm_new_token(chunk.text)
yield chunk
else:
return
except Exception as e:
# Handle any errors raised by the inference endpoint
raise ValueError(f"Error raised by the inference endpoint: {e}") from e
def _handle_stream_request(
self,
prompt: Union[List[str], str],
stop: Optional[List[str]],
run_manager: Optional[CallbackManagerForLLMRun],
kwargs: Dict[str, Any],
) -> str:
"""
Perform a streaming request to the LLM.
Args:
prompt: The prompt to generate from.
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of the stop substrings.
run_manager: Callback manager for the run.
kwargs: Additional keyword arguments. directly passed
to the sambaverse model in API call.
Returns:
The model output as a string.
"""
completion = ""
for chunk in self._stream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
def _call(
self,
prompt: Union[List[str], str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Run the LLM on the given input.
Args:
prompt: The prompt to generate from.
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of the stop substrings.
run_manager: Callback manager for the run.
kwargs: Additional keyword arguments. directly passed
to the sambaverse model in API call.
Returns:
The model output as a string.
"""
try:
if self.streaming:
return self._handle_stream_request(prompt, stop, run_manager, kwargs)
return self._handle_completion_requests(prompt, stop)
except Exception as e:
# Handle any errors raised by the inference endpoint
raise ValueError(f"Error raised by the inference endpoint: {e}") from e
class SSEndpointHandler:
"""
SambaNova Systems Interface for SambaStudio model endpoints.
@ -975,7 +517,7 @@ class SambaStudio(LLM):
first occurrence of any of the stop substrings.
run_manager: Callback manager for the run.
kwargs: Additional keyword arguments. directly passed
to the sambaverse model in API call.
to the sambastudio model in API call.
Returns:
The model output as a string.

View File

@ -20,7 +20,7 @@ count=$(git grep -E '(@root_validator)|(@validator)|(@field_validator)|(@pre_ini
# PRs that increase the current count will not be accepted.
# PRs that decrease update the code in the repository
# and allow decreasing the count of are welcome!
current_count=129
current_count=128
if [ "$count" -gt "$current_count" ]; then
echo "The PR seems to be introducing new usage of @root_validator and/or @field_validator."

View File

@ -1,28 +1,17 @@
"""Test sambanova API wrapper.
In order to run this test, you need to have an sambaverse api key,
and a sambaverse base url, project id, endpoint id, and api key.
You'll then need to set SAMBAVERSE_API_KEY, SAMBASTUDIO_BASE_URL,
In order to run this test, you need to have a sambastudio base url,
project id, endpoint id, and api key.
You'll then need to set SAMBASTUDIO_BASE_URL, SAMBASTUDIO_BASE_URI
SAMBASTUDIO_PROJECT_ID, SAMBASTUDIO_ENDPOINT_ID, and SAMBASTUDIO_API_KEY
environment variables.
"""
from langchain_community.llms.sambanova import SambaStudio, Sambaverse
def test_sambaverse_call() -> None:
"""Test simple non-streaming call to sambaverse."""
llm = Sambaverse(
sambaverse_model_name="Meta/llama-2-7b-chat-hf",
model_kwargs={"select_expert": "llama-2-7b-chat-hf"},
)
output = llm.invoke("What is LangChain")
assert output
assert isinstance(output, str)
from langchain_community.llms.sambanova import SambaStudio
def test_sambastudio_call() -> None:
"""Test simple non-streaming call to sambaverse."""
"""Test simple non-streaming call to sambastudio."""
llm = SambaStudio()
output = llm.invoke("What is LangChain")
assert output

View File

@ -77,7 +77,6 @@ EXPECT_ALL = [
"RWKV",
"Replicate",
"SagemakerEndpoint",
"Sambaverse",
"SambaStudio",
"SelfHostedHuggingFaceLLM",
"SelfHostedPipeline",