mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-21 10:31:23 +00:00
chroma[patch]: ruff fixes and rules (#31900)
* bump ruff deps * add more thorough ruff rules * fix said rules
This commit is contained in:
@@ -79,11 +79,14 @@ def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray:
|
||||
X = np.array(X)
|
||||
Y = np.array(Y)
|
||||
if X.shape[1] != Y.shape[1]:
|
||||
raise ValueError(
|
||||
msg = (
|
||||
"Number of columns in X and Y must be the same. X has shape"
|
||||
f"{X.shape} "
|
||||
f"and Y has shape {Y.shape}."
|
||||
)
|
||||
raise ValueError(
|
||||
msg,
|
||||
)
|
||||
|
||||
X_norm = np.linalg.norm(X, axis=1)
|
||||
Y_norm = np.linalg.norm(Y, axis=1)
|
||||
@@ -285,7 +288,7 @@ class Chroma(VectorStore):
|
||||
collection_metadata: Optional[dict] = None,
|
||||
client: Optional[chromadb.ClientAPI] = None,
|
||||
relevance_score_fn: Optional[Callable[[float], float]] = None,
|
||||
create_collection_if_not_exists: Optional[bool] = True,
|
||||
create_collection_if_not_exists: Optional[bool] = True, # noqa: FBT002
|
||||
) -> None:
|
||||
"""Initialize with a Chroma client.
|
||||
|
||||
@@ -351,10 +354,13 @@ class Chroma(VectorStore):
|
||||
def _collection(self) -> chromadb.Collection:
|
||||
"""Returns the underlying Chroma collection or throws an exception."""
|
||||
if self._chroma_collection is None:
|
||||
raise ValueError(
|
||||
msg = (
|
||||
"Chroma collection not initialized. "
|
||||
"Use `reset_collection` to re-create and initialize the collection. "
|
||||
)
|
||||
raise ValueError(
|
||||
msg,
|
||||
)
|
||||
return self._chroma_collection
|
||||
|
||||
@property
|
||||
@@ -392,10 +398,10 @@ class Chroma(VectorStore):
|
||||
"""
|
||||
return self._collection.query(
|
||||
query_texts=query_texts,
|
||||
query_embeddings=query_embeddings, # type: ignore
|
||||
query_embeddings=query_embeddings, # type: ignore[arg-type]
|
||||
n_results=n_results,
|
||||
where=where, # type: ignore
|
||||
where_document=where_document, # type: ignore
|
||||
where=where, # type: ignore[arg-type]
|
||||
where_document=where_document, # type: ignore[arg-type]
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@@ -432,11 +438,12 @@ class Chroma(VectorStore):
|
||||
if ids is None:
|
||||
ids = [str(uuid.uuid4()) for _ in uris]
|
||||
else:
|
||||
ids = [id if id is not None else str(uuid.uuid4()) for id in ids]
|
||||
ids = [id_ if id_ is not None else str(uuid.uuid4()) for id_ in ids]
|
||||
embeddings = None
|
||||
# Set embeddings
|
||||
if self._embedding_function is not None and hasattr(
|
||||
self._embedding_function, "embed_image"
|
||||
self._embedding_function,
|
||||
"embed_image",
|
||||
):
|
||||
embeddings = self._embedding_function.embed_image(uris=uris)
|
||||
if metadatas:
|
||||
@@ -461,8 +468,8 @@ class Chroma(VectorStore):
|
||||
ids_with_metadata = [ids[idx] for idx in non_empty_ids]
|
||||
try:
|
||||
self._collection.upsert(
|
||||
metadatas=metadatas, # type: ignore
|
||||
embeddings=embeddings_with_metadatas, # type: ignore
|
||||
metadatas=metadatas, # type: ignore[arg-type]
|
||||
embeddings=embeddings_with_metadatas, # type: ignore[arg-type]
|
||||
documents=images_with_metadatas,
|
||||
ids=ids_with_metadata,
|
||||
)
|
||||
@@ -473,8 +480,7 @@ class Chroma(VectorStore):
|
||||
"langchain_community.vectorstores.utils.filter_complex_metadata."
|
||||
)
|
||||
raise ValueError(e.args[0] + "\n\n" + msg)
|
||||
else:
|
||||
raise e
|
||||
raise e
|
||||
if empty_ids:
|
||||
images_without_metadatas = [b64_texts[j] for j in empty_ids]
|
||||
embeddings_without_metadatas = (
|
||||
@@ -519,7 +525,7 @@ class Chroma(VectorStore):
|
||||
if ids is None:
|
||||
ids = [str(uuid.uuid4()) for _ in texts]
|
||||
else:
|
||||
ids = [id if id is not None else str(uuid.uuid4()) for id in ids]
|
||||
ids = [id_ if id_ is not None else str(uuid.uuid4()) for id_ in ids]
|
||||
|
||||
embeddings = None
|
||||
texts = list(texts)
|
||||
@@ -549,8 +555,8 @@ class Chroma(VectorStore):
|
||||
ids_with_metadata = [ids[idx] for idx in non_empty_ids]
|
||||
try:
|
||||
self._collection.upsert(
|
||||
metadatas=metadatas, # type: ignore
|
||||
embeddings=embeddings_with_metadatas, # type: ignore
|
||||
metadatas=metadatas, # type: ignore[arg-type]
|
||||
embeddings=embeddings_with_metadatas, # type: ignore[arg-type]
|
||||
documents=texts_with_metadatas,
|
||||
ids=ids_with_metadata,
|
||||
)
|
||||
@@ -561,8 +567,7 @@ class Chroma(VectorStore):
|
||||
"langchain_community.vectorstores.utils.filter_complex_metadata."
|
||||
)
|
||||
raise ValueError(e.args[0] + "\n\n" + msg)
|
||||
else:
|
||||
raise e
|
||||
raise e
|
||||
if empty_ids:
|
||||
texts_without_metadatas = [texts[j] for j in empty_ids]
|
||||
embeddings_without_metadatas = (
|
||||
@@ -570,13 +575,13 @@ class Chroma(VectorStore):
|
||||
)
|
||||
ids_without_metadatas = [ids[j] for j in empty_ids]
|
||||
self._collection.upsert(
|
||||
embeddings=embeddings_without_metadatas, # type: ignore
|
||||
embeddings=embeddings_without_metadatas, # type: ignore[arg-type]
|
||||
documents=texts_without_metadatas,
|
||||
ids=ids_without_metadatas,
|
||||
)
|
||||
else:
|
||||
self._collection.upsert(
|
||||
embeddings=embeddings, # type: ignore
|
||||
embeddings=embeddings, # type: ignore[arg-type]
|
||||
documents=texts,
|
||||
ids=ids,
|
||||
)
|
||||
@@ -586,7 +591,7 @@ class Chroma(VectorStore):
|
||||
self,
|
||||
query: str,
|
||||
k: int = DEFAULT_K,
|
||||
filter: Optional[dict[str, str]] = None,
|
||||
filter: Optional[dict[str, str]] = None, # noqa: A002
|
||||
**kwargs: Any,
|
||||
) -> list[Document]:
|
||||
"""Run similarity search with Chroma.
|
||||
@@ -601,7 +606,10 @@ class Chroma(VectorStore):
|
||||
List of documents most similar to the query text.
|
||||
"""
|
||||
docs_and_scores = self.similarity_search_with_score(
|
||||
query, k, filter=filter, **kwargs
|
||||
query,
|
||||
k,
|
||||
filter=filter,
|
||||
**kwargs,
|
||||
)
|
||||
return [doc for doc, _ in docs_and_scores]
|
||||
|
||||
@@ -609,7 +617,7 @@ class Chroma(VectorStore):
|
||||
self,
|
||||
embedding: list[float],
|
||||
k: int = DEFAULT_K,
|
||||
filter: Optional[dict[str, str]] = None,
|
||||
filter: Optional[dict[str, str]] = None, # noqa: A002
|
||||
where_document: Optional[dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> list[Document]:
|
||||
@@ -639,7 +647,7 @@ class Chroma(VectorStore):
|
||||
self,
|
||||
embedding: list[float],
|
||||
k: int = DEFAULT_K,
|
||||
filter: Optional[dict[str, str]] = None,
|
||||
filter: Optional[dict[str, str]] = None, # noqa: A002
|
||||
where_document: Optional[dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> list[tuple[Document, float]]:
|
||||
@@ -670,7 +678,7 @@ class Chroma(VectorStore):
|
||||
self,
|
||||
query: str,
|
||||
k: int = DEFAULT_K,
|
||||
filter: Optional[dict[str, str]] = None,
|
||||
filter: Optional[dict[str, str]] = None, # noqa: A002
|
||||
where_document: Optional[dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> list[tuple[Document, float]]:
|
||||
@@ -712,7 +720,7 @@ class Chroma(VectorStore):
|
||||
self,
|
||||
query: str,
|
||||
k: int = DEFAULT_K,
|
||||
filter: Optional[dict[str, str]] = None,
|
||||
filter: Optional[dict[str, str]] = None, # noqa: A002
|
||||
where_document: Optional[dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> list[tuple[Document, np.ndarray]]:
|
||||
@@ -780,22 +788,24 @@ class Chroma(VectorStore):
|
||||
|
||||
if distance == "cosine":
|
||||
return self._cosine_relevance_score_fn
|
||||
elif distance == "l2":
|
||||
if distance == "l2":
|
||||
return self._euclidean_relevance_score_fn
|
||||
elif distance == "ip":
|
||||
if distance == "ip":
|
||||
return self._max_inner_product_relevance_score_fn
|
||||
else:
|
||||
raise ValueError(
|
||||
"No supported normalization function"
|
||||
f" for distance metric of type: {distance}."
|
||||
"Consider providing relevance_score_fn to Chroma constructor."
|
||||
)
|
||||
msg = (
|
||||
"No supported normalization function"
|
||||
f" for distance metric of type: {distance}."
|
||||
"Consider providing relevance_score_fn to Chroma constructor."
|
||||
)
|
||||
raise ValueError(
|
||||
msg,
|
||||
)
|
||||
|
||||
def similarity_search_by_image(
|
||||
self,
|
||||
uri: str,
|
||||
k: int = DEFAULT_K,
|
||||
filter: Optional[dict[str, str]] = None,
|
||||
filter: Optional[dict[str, str]] = None, # noqa: A002
|
||||
**kwargs: Any,
|
||||
) -> list[Document]:
|
||||
"""Search for similar images based on the given image URI.
|
||||
@@ -817,29 +827,29 @@ class Chroma(VectorStore):
|
||||
ValueError: If the embedding function does not support image embeddings.
|
||||
"""
|
||||
if self._embedding_function is None or not hasattr(
|
||||
self._embedding_function, "embed_image"
|
||||
self._embedding_function,
|
||||
"embed_image",
|
||||
):
|
||||
raise ValueError("The embedding function must support image embedding.")
|
||||
msg = "The embedding function must support image embedding."
|
||||
raise ValueError(msg)
|
||||
|
||||
# Obtain image embedding
|
||||
# Assuming embed_image returns a single embedding
|
||||
image_embedding = self._embedding_function.embed_image(uris=[uri])
|
||||
|
||||
# Perform similarity search based on the obtained embedding
|
||||
results = self.similarity_search_by_vector(
|
||||
return self.similarity_search_by_vector(
|
||||
embedding=image_embedding,
|
||||
k=k,
|
||||
filter=filter,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
def similarity_search_by_image_with_relevance_score(
|
||||
self,
|
||||
uri: str,
|
||||
k: int = DEFAULT_K,
|
||||
filter: Optional[dict[str, str]] = None,
|
||||
filter: Optional[dict[str, str]] = None, # noqa: A002
|
||||
**kwargs: Any,
|
||||
) -> list[tuple[Document, float]]:
|
||||
"""Search for similar images based on the given image URI.
|
||||
@@ -861,31 +871,31 @@ class Chroma(VectorStore):
|
||||
ValueError: If the embedding function does not support image embeddings.
|
||||
"""
|
||||
if self._embedding_function is None or not hasattr(
|
||||
self._embedding_function, "embed_image"
|
||||
self._embedding_function,
|
||||
"embed_image",
|
||||
):
|
||||
raise ValueError("The embedding function must support image embedding.")
|
||||
msg = "The embedding function must support image embedding."
|
||||
raise ValueError(msg)
|
||||
|
||||
# Obtain image embedding
|
||||
# Assuming embed_image returns a single embedding
|
||||
image_embedding = self._embedding_function.embed_image(uris=[uri])
|
||||
|
||||
# Perform similarity search based on the obtained embedding
|
||||
results = self.similarity_search_by_vector_with_relevance_scores(
|
||||
return self.similarity_search_by_vector_with_relevance_scores(
|
||||
embedding=image_embedding,
|
||||
k=k,
|
||||
filter=filter,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
def max_marginal_relevance_search_by_vector(
|
||||
self,
|
||||
embedding: list[float],
|
||||
k: int = DEFAULT_K,
|
||||
fetch_k: int = 20,
|
||||
lambda_mult: float = 0.5,
|
||||
filter: Optional[dict[str, str]] = None,
|
||||
filter: Optional[dict[str, str]] = None, # noqa: A002
|
||||
where_document: Optional[dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> list[Document]:
|
||||
@@ -928,8 +938,7 @@ class Chroma(VectorStore):
|
||||
|
||||
candidates = _results_to_docs(results)
|
||||
|
||||
selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected]
|
||||
return selected_results
|
||||
return [r for i, r in enumerate(candidates) if i in mmr_selected]
|
||||
|
||||
def max_marginal_relevance_search(
|
||||
self,
|
||||
@@ -937,7 +946,7 @@ class Chroma(VectorStore):
|
||||
k: int = DEFAULT_K,
|
||||
fetch_k: int = 20,
|
||||
lambda_mult: float = 0.5,
|
||||
filter: Optional[dict[str, str]] = None,
|
||||
filter: Optional[dict[str, str]] = None, # noqa: A002
|
||||
where_document: Optional[dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> list[Document]:
|
||||
@@ -966,8 +975,9 @@ class Chroma(VectorStore):
|
||||
ValueError: If the embedding function is not provided.
|
||||
"""
|
||||
if self._embedding_function is None:
|
||||
msg = "For MMR search, you must specify an embedding function on creation."
|
||||
raise ValueError(
|
||||
"For MMR search, you must specify an embedding function on creation."
|
||||
msg,
|
||||
)
|
||||
|
||||
embedding = self._embedding_function.embed_query(query)
|
||||
@@ -1032,7 +1042,7 @@ class Chroma(VectorStore):
|
||||
if include is not None:
|
||||
kwargs["include"] = include
|
||||
|
||||
return self._collection.get(**kwargs) # type: ignore
|
||||
return self._collection.get(**kwargs) # type: ignore[arg-type, return-value]
|
||||
|
||||
def get_by_ids(self, ids: Sequence[str], /) -> list[Document]:
|
||||
"""Get documents by their IDs.
|
||||
@@ -1062,7 +1072,9 @@ class Chroma(VectorStore):
|
||||
return [
|
||||
Document(page_content=doc, metadata=meta, id=doc_id)
|
||||
for doc, meta, doc_id in zip(
|
||||
results["documents"], results["metadatas"], results["ids"]
|
||||
results["documents"],
|
||||
results["metadatas"],
|
||||
results["ids"],
|
||||
)
|
||||
]
|
||||
|
||||
@@ -1075,7 +1087,6 @@ class Chroma(VectorStore):
|
||||
"""
|
||||
return self.update_documents([document_id], [document])
|
||||
|
||||
# type: ignore
|
||||
def update_documents(self, ids: list[str], documents: list[Document]) -> None:
|
||||
"""Update a document in the collection.
|
||||
|
||||
@@ -1089,24 +1100,27 @@ class Chroma(VectorStore):
|
||||
text = [document.page_content for document in documents]
|
||||
metadata = [document.metadata for document in documents]
|
||||
if self._embedding_function is None:
|
||||
msg = "For update, you must specify an embedding function on creation."
|
||||
raise ValueError(
|
||||
"For update, you must specify an embedding function on creation."
|
||||
msg,
|
||||
)
|
||||
embeddings = self._embedding_function.embed_documents(text)
|
||||
|
||||
if hasattr(
|
||||
self._collection._client, "get_max_batch_size"
|
||||
self._collection._client, # noqa: SLF001
|
||||
"get_max_batch_size",
|
||||
) or hasattr( # for Chroma 0.5.1 and above
|
||||
self._collection._client, "max_batch_size"
|
||||
self._collection._client, # noqa: SLF001
|
||||
"max_batch_size",
|
||||
): # for Chroma 0.4.10 and above
|
||||
from chromadb.utils.batch_utils import create_batches
|
||||
|
||||
for batch in create_batches(
|
||||
api=self._collection._client,
|
||||
api=self._collection._client, # noqa: SLF001
|
||||
ids=ids,
|
||||
metadatas=metadata, # type: ignore
|
||||
metadatas=metadata, # type: ignore[arg-type]
|
||||
documents=text,
|
||||
embeddings=embeddings, # type: ignore
|
||||
embeddings=embeddings, # type: ignore[arg-type]
|
||||
):
|
||||
self._collection.update(
|
||||
ids=batch[0],
|
||||
@@ -1117,9 +1131,9 @@ class Chroma(VectorStore):
|
||||
else:
|
||||
self._collection.update(
|
||||
ids=ids,
|
||||
embeddings=embeddings, # type: ignore
|
||||
embeddings=embeddings, # type: ignore[arg-type]
|
||||
documents=text,
|
||||
metadatas=metadata, # type: ignore
|
||||
metadatas=metadata, # type: ignore[arg-type]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@@ -1170,23 +1184,25 @@ class Chroma(VectorStore):
|
||||
if ids is None:
|
||||
ids = [str(uuid.uuid4()) for _ in texts]
|
||||
else:
|
||||
ids = [id if id is not None else str(uuid.uuid4()) for id in ids]
|
||||
ids = [id_ if id_ is not None else str(uuid.uuid4()) for id_ in ids]
|
||||
if hasattr(
|
||||
chroma_collection._client, "get_max_batch_size"
|
||||
chroma_collection._client, # noqa: SLF001
|
||||
"get_max_batch_size",
|
||||
) or hasattr( # for Chroma 0.5.1 and above
|
||||
chroma_collection._client, "max_batch_size"
|
||||
chroma_collection._client, # noqa: SLF001
|
||||
"max_batch_size",
|
||||
): # for Chroma 0.4.10 and above
|
||||
from chromadb.utils.batch_utils import create_batches
|
||||
|
||||
for batch in create_batches(
|
||||
api=chroma_collection._client,
|
||||
api=chroma_collection._client, # noqa: SLF001
|
||||
ids=ids,
|
||||
metadatas=metadatas, # type: ignore
|
||||
metadatas=metadatas, # type: ignore[arg-type]
|
||||
documents=texts,
|
||||
):
|
||||
chroma_collection.add_texts(
|
||||
texts=batch[3] if batch[3] else [],
|
||||
metadatas=batch[2] if batch[2] else None, # type: ignore
|
||||
metadatas=batch[2] if batch[2] else None, # type: ignore[arg-type]
|
||||
ids=batch[0],
|
||||
)
|
||||
else:
|
||||
|
Reference in New Issue
Block a user