mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-25 21:37:20 +00:00
community[minor]: Add Initial Support for TiDB Vector Store (#15796)
This pull request introduces initial support for the TiDB vector store. The current version is basic, laying the foundation for the vector store integration. While this implementation provides the essential features, we plan to expand and improve the TiDB vector store support with additional enhancements in future updates. Upcoming Enhancements: * Support for Vector Index Creation: To enhance the efficiency and performance of the vector store. * Support for max marginal relevance search. * Customized Table Structure Support: Recognizing the need for flexibility, we plan for more tailored and efficient data store solutions. Simple use case exmaple ```python from typing import List, Tuple from langchain.docstore.document import Document from langchain_community.vectorstores import TiDBVectorStore from langchain_openai import OpenAIEmbeddings db = TiDBVectorStore.from_texts( embedding=embeddings, texts=['Andrew like eating oranges', 'Alexandra is from England', 'Ketanji Brown Jackson is a judge'], table_name="tidb_vector_langchain", connection_string=tidb_connection_url, distance_strategy="cosine", ) query = "Can you tell me about Alexandra?" docs_with_score: List[Tuple[Document, float]] = db.similarity_search_with_score(query) for doc, score in docs_with_score: print("-" * 80) print("Score: ", score) print(doc.page_content) print("-" * 80) ```
This commit is contained in:
@@ -436,6 +436,12 @@ def _import_tencentvectordb() -> Any:
|
||||
return TencentVectorDB
|
||||
|
||||
|
||||
def _import_tidb_vectorstore() -> Any:
|
||||
from langchain_community.vectorstores.tidb_vector import TiDBVectorStore
|
||||
|
||||
return TiDBVectorStore
|
||||
|
||||
|
||||
def _import_tiledb() -> Any:
|
||||
from langchain_community.vectorstores.tiledb import TileDB
|
||||
|
||||
@@ -651,6 +657,8 @@ def __getattr__(name: str) -> Any:
|
||||
return _import_tair()
|
||||
elif name == "TencentVectorDB":
|
||||
return _import_tencentvectordb()
|
||||
elif name == "TiDBVectorStore":
|
||||
return _import_tidb_vectorstore()
|
||||
elif name == "TileDB":
|
||||
return _import_tiledb()
|
||||
elif name == "Tigris":
|
||||
@@ -746,6 +754,7 @@ __all__ = [
|
||||
"SupabaseVectorStore",
|
||||
"SurrealDBStore",
|
||||
"Tair",
|
||||
"TiDBVectorStore",
|
||||
"TileDB",
|
||||
"Tigris",
|
||||
"TimescaleVector",
|
||||
|
362
libs/community/langchain_community/vectorstores/tidb_vector.py
Normal file
362
libs/community/langchain_community/vectorstores/tidb_vector.py
Normal file
@@ -0,0 +1,362 @@
|
||||
import uuid
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
|
||||
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.vectorstores import VectorStore
|
||||
|
||||
DEFAULT_DISTANCE_STRATEGY = "cosine" # or "l2", "inner_product"
|
||||
DEFAULT_TiDB_VECTOR_TABLE_NAME = "langchain_vector"
|
||||
|
||||
|
||||
class TiDBVectorStore(VectorStore):
|
||||
def __init__(
|
||||
self,
|
||||
connection_string: str,
|
||||
embedding_function: Embeddings,
|
||||
table_name: str = DEFAULT_TiDB_VECTOR_TABLE_NAME,
|
||||
distance_strategy: str = DEFAULT_DISTANCE_STRATEGY,
|
||||
*,
|
||||
engine_args: Optional[Dict[str, Any]] = None,
|
||||
drop_existing_table: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize a TiDB Vector Store in Langchain with a flexible
|
||||
and standardized table structure for storing vector data
|
||||
which remains fixed regardless of the dynamic table name setting.
|
||||
|
||||
The vector table schema includes:
|
||||
- 'id': a UUID for each entry.
|
||||
- 'embedding': stores vector data in a VectorType column.
|
||||
- 'document': a Text column for the original data or additional information.
|
||||
- 'meta': a JSON column for flexible metadata storage.
|
||||
- 'create_time' and 'update_time': timestamp columns for tracking data changes.
|
||||
|
||||
This table structure caters to general use cases and
|
||||
complex scenarios where the table serves as a semantic layer for advanced
|
||||
data integration and analysis, leveraging SQL for join queries.
|
||||
|
||||
Args:
|
||||
connection_string (str): The connection string for the TiDB database,
|
||||
format: "mysql+pymysql://root@34.212.137.91:4000/test".
|
||||
embedding_function: The embedding function used to generate embeddings.
|
||||
table_name (str, optional): The name of the table that will be used to
|
||||
store vector data. If you do not provide a table name,
|
||||
a default table named `langchain_vector` will be created automatically.
|
||||
distance_strategy: The strategy used for similarity search,
|
||||
defaults to "cosine", valid values: "l2", "cosine", "inner_product".
|
||||
engine_args (Optional[Dict]): Additional arguments for the database engine,
|
||||
defaults to None.
|
||||
drop_existing_table: Drop the existing TiDB table before initializing,
|
||||
defaults to False.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
|
||||
Examples:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.vectorstores import TiDBVectorStore
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
|
||||
embeddingFunc = OpenAIEmbeddings()
|
||||
CONNECTION_STRING = "mysql+pymysql://root@34.212.137.91:4000/test"
|
||||
|
||||
vs = TiDBVector.from_texts(
|
||||
embedding=embeddingFunc,
|
||||
texts = [..., ...],
|
||||
connection_string=CONNECTION_STRING,
|
||||
distance_strategy="l2",
|
||||
table_name="tidb_vector_langchain",
|
||||
)
|
||||
|
||||
query = "What did the president say about Ketanji Brown Jackson"
|
||||
docs = db.similarity_search_with_score(query)
|
||||
|
||||
"""
|
||||
|
||||
super().__init__(**kwargs)
|
||||
self._connection_string = connection_string
|
||||
self._embedding_function = embedding_function
|
||||
self._distance_strategy = distance_strategy
|
||||
self._vector_dimension = self._get_dimension()
|
||||
|
||||
try:
|
||||
from tidb_vector.integrations import TiDBVectorClient
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import tidbvec python package. "
|
||||
"Please install it with `pip install tidb-vector`."
|
||||
)
|
||||
|
||||
self._tidb = TiDBVectorClient(
|
||||
connection_string=connection_string,
|
||||
table_name=table_name,
|
||||
distance_strategy=distance_strategy,
|
||||
vector_dimension=self._vector_dimension,
|
||||
engine_args=engine_args,
|
||||
drop_existing_table=drop_existing_table,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def embeddings(self) -> Embeddings:
|
||||
"""Return the function used to generate embeddings."""
|
||||
return self._embedding_function
|
||||
|
||||
@property
|
||||
def tidb_vector_client(self) -> Any:
|
||||
"""Return the TiDB Vector Client."""
|
||||
return self._tidb
|
||||
|
||||
@property
|
||||
def distance_strategy(self) -> Any:
|
||||
"""
|
||||
Returns the current distance strategy.
|
||||
"""
|
||||
return self._distance_strategy
|
||||
|
||||
def _get_dimension(self) -> int:
|
||||
"""
|
||||
Get the dimension of the vector using embedding functions.
|
||||
"""
|
||||
return len(self._embedding_function.embed_query("test embedding length"))
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls,
|
||||
texts: List[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
**kwargs: Any,
|
||||
) -> "TiDBVectorStore":
|
||||
"""
|
||||
Create a VectorStore from a list of texts.
|
||||
|
||||
Args:
|
||||
texts (List[str]): The list of texts to be added to the TiDB Vector.
|
||||
embedding (Embeddings): The function to use for generating embeddings.
|
||||
metadatas: The list of metadata dictionaries corresponding to each text,
|
||||
defaults to None.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
connection_string (str): The connection string for the TiDB database,
|
||||
format: "mysql+pymysql://root@34.212.137.91:4000/test".
|
||||
table_name (str, optional): The name of table used to store vector data,
|
||||
defaults to "langchain_vector".
|
||||
distance_strategy: The distance strategy used for similarity search,
|
||||
defaults to "cosine", allowed: "l2", "cosine", "inner_product".
|
||||
ids (Optional[List[str]]): The list of IDs corresponding to each text,
|
||||
defaults to None.
|
||||
engine_args: Additional arguments for the underlying database engine,
|
||||
defaults to None.
|
||||
drop_existing_table: Drop the existing TiDB table before initializing,
|
||||
defaults to False.
|
||||
|
||||
Returns:
|
||||
VectorStore: The created TiDB Vector Store.
|
||||
|
||||
"""
|
||||
|
||||
# Extract arguments from kwargs with default values
|
||||
connection_string = kwargs.pop("connection_string", None)
|
||||
if connection_string is None:
|
||||
raise ValueError("please provide your tidb connection_url")
|
||||
table_name = kwargs.pop("table_name", "langchain_vector")
|
||||
distance_strategy = kwargs.pop("distance_strategy", "cosine")
|
||||
ids = kwargs.pop("ids", None)
|
||||
engine_args = kwargs.pop("engine_args", None)
|
||||
drop_existing_table = kwargs.pop("drop_existing_table", False)
|
||||
|
||||
embeddings = embedding.embed_documents(list(texts))
|
||||
|
||||
vs = cls(
|
||||
connection_string=connection_string,
|
||||
table_name=table_name,
|
||||
embedding_function=embedding,
|
||||
distance_strategy=distance_strategy,
|
||||
engine_args=engine_args,
|
||||
drop_existing_table=drop_existing_table,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
vs._tidb.insert(
|
||||
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
||||
)
|
||||
|
||||
return vs
|
||||
|
||||
@classmethod
|
||||
def from_existing_vector_table(
|
||||
cls,
|
||||
embedding: Embeddings,
|
||||
connection_string: str,
|
||||
table_name: str,
|
||||
distance_strategy: str = DEFAULT_DISTANCE_STRATEGY,
|
||||
*,
|
||||
engine_args: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
) -> VectorStore:
|
||||
"""
|
||||
Create a VectorStore instance from an existing TiDB Vector Store in TiDB.
|
||||
|
||||
Args:
|
||||
embedding (Embeddings): The function to use for generating embeddings.
|
||||
connection_string (str): The connection string for the TiDB database,
|
||||
format: "mysql+pymysql://root@34.212.137.91:4000/test".
|
||||
table_name (str, optional): The name of table used to store vector data,
|
||||
defaults to "langchain_vector".
|
||||
distance_strategy: The distance strategy used for similarity search,
|
||||
defaults to "cosine", allowed: "l2", "cosine", 'inner_product'.
|
||||
engine_args: Additional arguments for the underlying database engine,
|
||||
defaults to None.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
Returns:
|
||||
VectorStore: The VectorStore instance.
|
||||
|
||||
Raises:
|
||||
NoSuchTableError: If the specified table does not exist in the TiDB.
|
||||
"""
|
||||
|
||||
try:
|
||||
from tidb_vector.integrations import check_table_existence
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import tidbvec python package. "
|
||||
"Please install it with `pip install tidb-vector`."
|
||||
)
|
||||
|
||||
if check_table_existence(connection_string, table_name):
|
||||
return cls(
|
||||
connection_string=connection_string,
|
||||
table_name=table_name,
|
||||
embedding_function=embedding,
|
||||
distance_strategy=distance_strategy,
|
||||
engine_args=engine_args,
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Table {table_name} does not exist in the TiDB database.")
|
||||
|
||||
def drop_vectorstore(self) -> None:
|
||||
"""
|
||||
Drop the Vector Store from the TiDB database.
|
||||
"""
|
||||
self._tidb.drop_table()
|
||||
|
||||
def add_texts(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
"""
|
||||
Add texts to TiDB Vector Store.
|
||||
|
||||
Args:
|
||||
texts (Iterable[str]): The texts to be added.
|
||||
metadatas (Optional[List[dict]]): The metadata associated with each text,
|
||||
Defaults to None.
|
||||
ids (Optional[List[str]]): The IDs to be assigned to each text,
|
||||
Defaults to None, will be generated if not provided.
|
||||
|
||||
Returns:
|
||||
List[str]: The IDs assigned to the added texts.
|
||||
"""
|
||||
|
||||
embeddings = self._embedding_function.embed_documents(list(texts))
|
||||
if ids is None:
|
||||
ids = [str(uuid.uuid4()) for _ in texts]
|
||||
if not metadatas:
|
||||
metadatas = [{} for _ in texts]
|
||||
|
||||
return self._tidb.insert(
|
||||
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
||||
)
|
||||
|
||||
def delete(
|
||||
self,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""
|
||||
Delete vector data from the TiDB Vector Store.
|
||||
|
||||
Args:
|
||||
ids (Optional[List[str]]): A list of vector IDs to delete.
|
||||
**kwargs: Additional keyword arguments.
|
||||
"""
|
||||
|
||||
self._tidb.delete(ids=ids, **kwargs)
|
||||
|
||||
def similarity_search(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
filter: Optional[dict] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""
|
||||
Perform a similarity search using the given query.
|
||||
|
||||
Args:
|
||||
query (str): The query string.
|
||||
k (int, optional): The number of results to retrieve. Defaults to 4.
|
||||
filter (dict, optional): A filter to apply to the search results.
|
||||
Defaults to None.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
List[Document]: A list of Document objects representing the search results.
|
||||
"""
|
||||
result = self.similarity_search_with_score(query, k, filter, **kwargs)
|
||||
return [doc for doc, _ in result]
|
||||
|
||||
def similarity_search_with_score(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 5,
|
||||
filter: Optional[dict] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""
|
||||
Perform a similarity search with score based on the given query.
|
||||
|
||||
Args:
|
||||
query (str): The query string.
|
||||
k (int, optional): The number of results to return. Defaults to 5.
|
||||
filter (dict, optional): A filter to apply to the search results.
|
||||
Defaults to None.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
A list of tuples containing relevant documents and their similarity scores.
|
||||
"""
|
||||
query_vector = self._embedding_function.embed_query(query)
|
||||
relevant_docs = self._tidb.query(
|
||||
query_vector=query_vector, k=k, filter=filter, **kwargs
|
||||
)
|
||||
return [
|
||||
(
|
||||
Document(
|
||||
page_content=doc.document,
|
||||
metadata=doc.metadata,
|
||||
),
|
||||
doc.distance,
|
||||
)
|
||||
for doc in relevant_docs
|
||||
]
|
||||
|
||||
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
||||
"""
|
||||
Select the relevance score function based on the distance strategy.
|
||||
"""
|
||||
if self._distance_strategy == "cosine":
|
||||
return self._cosine_relevance_score_fn
|
||||
elif self._distance_strategy == "l2":
|
||||
return self._euclidean_relevance_score_fn
|
||||
else:
|
||||
raise ValueError(
|
||||
"No supported normalization function"
|
||||
f" for distance_strategy of {self._distance_strategy}."
|
||||
"Consider providing relevance_score_fn to PGVector constructor."
|
||||
)
|
20
libs/community/poetry.lock
generated
20
libs/community/poetry.lock
generated
@@ -6527,7 +6527,6 @@ files = [
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
|
||||
@@ -7808,6 +7807,21 @@ files = [
|
||||
{file = "threadpoolctl-3.2.0.tar.gz", hash = "sha256:c96a0ba3bdddeaca37dc4cc7344aafad41cdb8c313f74fdfe387a867bba93355"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tidb-vector"
|
||||
version = "0.0.4"
|
||||
description = ""
|
||||
optional = true
|
||||
python-versions = ">=3.8.1,<4.0"
|
||||
files = [
|
||||
{file = "tidb_vector-0.0.4-py3-none-any.whl", hash = "sha256:8e10d3f06da3beb5d676b3a6d817df1defb5d35a91945778a072c2452e777a3a"},
|
||||
{file = "tidb_vector-0.0.4.tar.gz", hash = "sha256:b2dcd3c437e6e073724f7e0093bb4e48484d41d8f7c8087329335dd3e44403ef"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
numpy = ">=1,<2"
|
||||
SQLAlchemy = ">=1.4,<3"
|
||||
|
||||
[[package]]
|
||||
name = "tiktoken"
|
||||
version = "0.5.2"
|
||||
@@ -9176,9 +9190,9 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
|
||||
|
||||
[extras]
|
||||
cli = ["typer"]
|
||||
extended-testing = ["aiosqlite", "aleph-alpha-client", "anthropic", "arxiv", "assemblyai", "atlassian-python-api", "azure-ai-documentintelligence", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "cloudpickle", "cloudpickle", "cohere", "databricks-vectorsearch", "datasets", "dgml-utils", "elasticsearch", "esprima", "faiss-cpu", "feedparser", "fireworks-ai", "geopandas", "gitpython", "google-cloud-documentai", "gql", "gradientai", "hdbcli", "hologres-vector", "html2text", "httpx", "javelin-sdk", "jinja2", "jq", "jsonschema", "lxml", "markdownify", "motor", "msal", "mwparserfromhell", "mwxml", "newspaper3k", "numexpr", "nvidia-riva-client", "oci", "openai", "openapi-pydantic", "oracle-ads", "pandas", "pdfminer-six", "pgvector", "praw", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "rank-bm25", "rapidfuzz", "rapidocr-onnxruntime", "rdflib", "requests-toolbelt", "rspace_client", "scikit-learn", "sqlite-vss", "streamlit", "sympy", "telethon", "timescale-vector", "tqdm", "tree-sitter", "tree-sitter-languages", "upstash-redis", "xata", "xmltodict", "zhipuai"]
|
||||
extended-testing = ["aiosqlite", "aleph-alpha-client", "anthropic", "arxiv", "assemblyai", "atlassian-python-api", "azure-ai-documentintelligence", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "cloudpickle", "cloudpickle", "cohere", "databricks-vectorsearch", "datasets", "dgml-utils", "elasticsearch", "esprima", "faiss-cpu", "feedparser", "fireworks-ai", "geopandas", "gitpython", "google-cloud-documentai", "gql", "gradientai", "hdbcli", "hologres-vector", "html2text", "httpx", "javelin-sdk", "jinja2", "jq", "jsonschema", "lxml", "markdownify", "motor", "msal", "mwparserfromhell", "mwxml", "newspaper3k", "numexpr", "nvidia-riva-client", "oci", "openai", "openapi-pydantic", "oracle-ads", "pandas", "pdfminer-six", "pgvector", "praw", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "rank-bm25", "rapidfuzz", "rapidocr-onnxruntime", "rdflib", "requests-toolbelt", "rspace_client", "scikit-learn", "sqlite-vss", "streamlit", "sympy", "telethon", "tidb-vector", "timescale-vector", "tqdm", "tree-sitter", "tree-sitter-languages", "upstash-redis", "xata", "xmltodict", "zhipuai"]
|
||||
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.8.1,<4.0"
|
||||
content-hash = "b744cd68e1c4be95f1461ddfd9c06526bbdef88595e652a3d8019e27a8225c1c"
|
||||
content-hash = "c8a7a435aabbfafc6c4210c2ceca2030b4a3724bd1d5804526498d2b52aa9db1"
|
||||
|
@@ -95,6 +95,7 @@ hdbcli = {version = "^2.19.21", optional = true}
|
||||
oci = {version = "^2.119.1", optional = true}
|
||||
rdflib = {version = "7.0.0", optional = true}
|
||||
nvidia-riva-client = {version = "^2.14.0", optional = true}
|
||||
tidb-vector = {version = ">=0.0.3,<1.0.0", optional = true}
|
||||
|
||||
[tool.poetry.group.test]
|
||||
optional = true
|
||||
@@ -263,6 +264,7 @@ extended_testing = [
|
||||
"hdbcli",
|
||||
"oci",
|
||||
"rdflib",
|
||||
"tidb-vector",
|
||||
"cloudpickle",
|
||||
]
|
||||
|
||||
|
@@ -0,0 +1,349 @@
|
||||
"""Test TiDB Vector functionality."""
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
from langchain_core.documents import Document
|
||||
|
||||
from langchain_community.vectorstores import TiDBVectorStore
|
||||
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
||||
|
||||
TiDB_CONNECT_URL = os.environ.get(
|
||||
"TEST_TiDB_CONNECTION_URL", "mysql+pymysql://root@127.0.0.1:4000/test"
|
||||
)
|
||||
|
||||
ADA_TOKEN_COUNT = 1536
|
||||
|
||||
|
||||
class FakeEmbeddingsWithAdaDimension(FakeEmbeddings):
|
||||
"""Fake embeddings functionality for testing."""
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Return simple embeddings based on ASCII values of text characters."""
|
||||
return [self._text_to_embedding(text) for text in texts]
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Return simple embeddings based on ASCII values of text characters."""
|
||||
return self._text_to_embedding(text)
|
||||
|
||||
def _text_to_embedding(self, text: str) -> List[float]:
|
||||
"""Convert text to a unique embedding using ASCII values."""
|
||||
ascii_values = [float(ord(char)) for char in text]
|
||||
# Pad or trim the list to make it of length ADA_TOKEN_COUNT
|
||||
ascii_values = ascii_values[:ADA_TOKEN_COUNT] + [0.0] * (
|
||||
ADA_TOKEN_COUNT - len(ascii_values)
|
||||
)
|
||||
return ascii_values
|
||||
|
||||
|
||||
def test_search() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
ids = ["1", "2", "3"]
|
||||
docsearch = TiDBVectorStore.from_texts(
|
||||
texts=texts,
|
||||
table_name="test_tidb_vectorstore_langchain",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=TiDB_CONNECT_URL,
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
drop_existing_table=True,
|
||||
distance_strategy="cosine",
|
||||
)
|
||||
|
||||
with docsearch.tidb_vector_client._make_session() as session:
|
||||
records = list(session.query(docsearch.tidb_vector_client._table_model).all())
|
||||
assert len([record.id for record in records]) == 3 # type: ignore
|
||||
session.close()
|
||||
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
docsearch.drop_vectorstore()
|
||||
assert output == [Document(page_content="foo", metadata={"page": "0"})]
|
||||
|
||||
|
||||
def test_search_with_filter() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
|
||||
# no metadata
|
||||
texts = ["foo", "bar", "baz"]
|
||||
docsearch = TiDBVectorStore.from_texts(
|
||||
texts=texts,
|
||||
table_name="test_tidb_vectorstore_langchain",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=TiDB_CONNECT_URL,
|
||||
drop_existing_table=True,
|
||||
)
|
||||
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
output_filtered = docsearch.similarity_search(
|
||||
"foo", k=1, filter={"filter_condition": "N/A"}
|
||||
)
|
||||
assert output == [Document(page_content="foo")]
|
||||
assert output_filtered == []
|
||||
|
||||
# having metadata
|
||||
metadatas = [{"page": i + 1, "page_str": str(i + 1)} for i in range(len(texts))]
|
||||
docsearch = TiDBVectorStore.from_texts(
|
||||
texts=texts,
|
||||
table_name="test_tidb_vectorstore_langchain",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=TiDB_CONNECT_URL,
|
||||
metadatas=metadatas,
|
||||
drop_existing_table=True,
|
||||
)
|
||||
|
||||
output = docsearch.similarity_search("foo", k=1, filter={"page": 1})
|
||||
assert output == [
|
||||
Document(page_content="foo", metadata={"page": 1, "page_str": "1"})
|
||||
]
|
||||
|
||||
# test mismatched value
|
||||
output = docsearch.similarity_search("foo", k=1, filter={"page": "1"})
|
||||
assert output == []
|
||||
|
||||
# test non-existing key
|
||||
output = docsearch.similarity_search("foo", k=1, filter={"filter_condition": "N/A"})
|
||||
assert output == []
|
||||
|
||||
# test IN, NIN expression
|
||||
output = docsearch.similarity_search("foo", k=1, filter={"page": {"$in": [1, 2]}})
|
||||
assert output == [
|
||||
Document(page_content="foo", metadata={"page": 1, "page_str": "1"})
|
||||
]
|
||||
output = docsearch.similarity_search("foo", k=1, filter={"page": {"$nin": [1, 2]}})
|
||||
assert output == [
|
||||
Document(page_content="baz", metadata={"page": 3, "page_str": "3"})
|
||||
]
|
||||
output = docsearch.similarity_search(
|
||||
"foo", k=1, filter={"page": {"$in": ["1", "2"]}}
|
||||
)
|
||||
assert output == []
|
||||
output = docsearch.similarity_search(
|
||||
"foo", k=1, filter={"page_str": {"$in": ["1", "2"]}}
|
||||
)
|
||||
assert output == [
|
||||
Document(page_content="foo", metadata={"page": 1, "page_str": "1"})
|
||||
]
|
||||
|
||||
# test GT, GTE, LT, LTE expression
|
||||
output = docsearch.similarity_search("foo", k=1, filter={"page": {"$gt": 1}})
|
||||
assert output == [
|
||||
Document(page_content="bar", metadata={"page": 2, "page_str": "2"})
|
||||
]
|
||||
output = docsearch.similarity_search("foo", k=1, filter={"page": {"$gte": 1}})
|
||||
assert output == [
|
||||
Document(page_content="foo", metadata={"page": 1, "page_str": "1"})
|
||||
]
|
||||
output = docsearch.similarity_search("foo", k=1, filter={"page": {"$lt": 3}})
|
||||
assert output == [
|
||||
Document(page_content="foo", metadata={"page": 1, "page_str": "1"})
|
||||
]
|
||||
output = docsearch.similarity_search("baz", k=1, filter={"page": {"$lte": 3}})
|
||||
assert output == [
|
||||
Document(page_content="baz", metadata={"page": 3, "page_str": "3"})
|
||||
]
|
||||
output = docsearch.similarity_search("foo", k=1, filter={"page": {"$gt": 3}})
|
||||
assert output == []
|
||||
output = docsearch.similarity_search("foo", k=1, filter={"page": {"$lt": 1}})
|
||||
assert output == []
|
||||
|
||||
# test eq, neq expression
|
||||
output = docsearch.similarity_search("foo", k=1, filter={"page": {"$eq": 3}})
|
||||
assert output == [
|
||||
Document(page_content="baz", metadata={"page": 3, "page_str": "3"})
|
||||
]
|
||||
output = docsearch.similarity_search("bar", k=1, filter={"page": {"$ne": 2}})
|
||||
assert output == [
|
||||
Document(page_content="baz", metadata={"page": 3, "page_str": "3"})
|
||||
]
|
||||
|
||||
# test AND, OR expression
|
||||
output = docsearch.similarity_search(
|
||||
"bar", k=1, filter={"$and": [{"page": 1}, {"page_str": "1"}]}
|
||||
)
|
||||
assert output == [
|
||||
Document(page_content="foo", metadata={"page": 1, "page_str": "1"})
|
||||
]
|
||||
output = docsearch.similarity_search(
|
||||
"bar", k=1, filter={"$or": [{"page": 1}, {"page_str": "2"}]}
|
||||
)
|
||||
assert output == [
|
||||
Document(page_content="bar", metadata={"page": 2, "page_str": "2"}),
|
||||
]
|
||||
output = docsearch.similarity_search(
|
||||
"foo",
|
||||
k=1,
|
||||
filter={
|
||||
"$or": [{"page": 1}, {"page": 2}],
|
||||
"$and": [{"page": 2}],
|
||||
},
|
||||
)
|
||||
assert output == [
|
||||
Document(page_content="bar", metadata={"page": 2, "page_str": "2"})
|
||||
]
|
||||
output = docsearch.similarity_search(
|
||||
"foo", k=1, filter={"$and": [{"$or": [{"page": 1}, {"page": 2}]}, {"page": 3}]}
|
||||
)
|
||||
assert output == []
|
||||
|
||||
docsearch.drop_vectorstore()
|
||||
|
||||
|
||||
def test_search_with_score() -> None:
|
||||
"""Test end to end construction, search"""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = TiDBVectorStore.from_texts(
|
||||
texts=texts,
|
||||
table_name="test_tidb_vectorstore_langchain",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=TiDB_CONNECT_URL,
|
||||
metadatas=metadatas,
|
||||
drop_existing_table=True,
|
||||
distance_strategy="cosine",
|
||||
)
|
||||
output = docsearch.similarity_search_with_score("foo", k=1)
|
||||
docsearch.drop_vectorstore()
|
||||
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
|
||||
|
||||
|
||||
def test_load_from_existing_vectorstore() -> None:
|
||||
"""Test loading existing TiDB Vector Store."""
|
||||
|
||||
# create tidb vector store and add documents
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = TiDBVectorStore.from_texts(
|
||||
texts=texts,
|
||||
table_name="test_tidb_vectorstore_langchain",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=TiDB_CONNECT_URL,
|
||||
metadatas=metadatas,
|
||||
drop_existing_table=True,
|
||||
distance_strategy="cosine",
|
||||
)
|
||||
|
||||
# load from existing tidb vector store
|
||||
docsearch_copy = TiDBVectorStore.from_existing_vector_table(
|
||||
table_name="test_tidb_vectorstore_langchain",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=TiDB_CONNECT_URL,
|
||||
)
|
||||
output = docsearch_copy.similarity_search_with_score("foo", k=1)
|
||||
docsearch.drop_vectorstore()
|
||||
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
|
||||
|
||||
# load from non-existing tidb vector store
|
||||
try:
|
||||
_ = TiDBVectorStore.from_existing_vector_table(
|
||||
table_name="test_vectorstore_non_existing",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=TiDB_CONNECT_URL,
|
||||
)
|
||||
assert False, "non-existing tidb vector store testing raised an error"
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
|
||||
def test_delete_doc() -> None:
|
||||
"""Test delete document from TiDB Vector."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
ids = ["1", "2", "3"]
|
||||
docsearch = TiDBVectorStore.from_texts(
|
||||
texts=texts,
|
||||
table_name="test_tidb_vectorstore_langchain",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
ids=ids,
|
||||
connection_string=TiDB_CONNECT_URL,
|
||||
metadatas=metadatas,
|
||||
drop_existing_table=True,
|
||||
)
|
||||
|
||||
output = docsearch.similarity_search_with_score("foo", k=1)
|
||||
docsearch.delete(["1", "2"])
|
||||
output_after_deleted = docsearch.similarity_search_with_score("foo", k=1)
|
||||
docsearch.drop_vectorstore()
|
||||
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0)]
|
||||
assert output_after_deleted == [
|
||||
(Document(page_content="baz", metadata={"page": "2"}), 0.004691842206844599)
|
||||
]
|
||||
|
||||
|
||||
def test_relevance_score() -> None:
|
||||
"""Test to make sure the relevance score is scaled to 0-1."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch_consine = TiDBVectorStore.from_texts(
|
||||
texts=texts,
|
||||
table_name="test_tidb_vectorstore_langchain",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=TiDB_CONNECT_URL,
|
||||
metadatas=metadatas,
|
||||
distance_strategy="cosine",
|
||||
drop_existing_table=True,
|
||||
)
|
||||
|
||||
output_consine = docsearch_consine.similarity_search_with_relevance_scores(
|
||||
"foo", k=3
|
||||
)
|
||||
assert output_consine == [
|
||||
(Document(page_content="foo", metadata={"page": "0"}), 1.0),
|
||||
(Document(page_content="bar", metadata={"page": "1"}), 0.9977280385800326),
|
||||
(Document(page_content="baz", metadata={"page": "2"}), 0.9953081577931554),
|
||||
]
|
||||
|
||||
docsearch_l2 = TiDBVectorStore.from_existing_vector_table(
|
||||
table_name="test_tidb_vectorstore_langchain",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=TiDB_CONNECT_URL,
|
||||
distance_strategy="l2",
|
||||
)
|
||||
output_l2 = docsearch_l2.similarity_search_with_relevance_scores("foo", k=3)
|
||||
assert output_l2 == [
|
||||
(Document(page_content="foo", metadata={"page": "0"}), 1.0),
|
||||
(Document(page_content="bar", metadata={"page": "1"}), -9.51189802081432),
|
||||
(Document(page_content="baz", metadata={"page": "2"}), -11.90348790056394),
|
||||
]
|
||||
|
||||
try:
|
||||
_ = TiDBVectorStore.from_texts(
|
||||
texts=texts,
|
||||
table_name="test_tidb_vectorstore_langchain",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=TiDB_CONNECT_URL,
|
||||
metadatas=metadatas,
|
||||
distance_strategy="inner",
|
||||
drop_existing_table=True,
|
||||
)
|
||||
assert False, "inner product should raise error"
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
docsearch_l2.drop_vectorstore()
|
||||
|
||||
|
||||
def test_retriever_search_threshold() -> None:
|
||||
"""Test using retriever for searching with threshold."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = TiDBVectorStore.from_texts(
|
||||
texts=texts,
|
||||
table_name="test_tidb_vectorstore_langchain",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
metadatas=metadatas,
|
||||
connection_string=TiDB_CONNECT_URL,
|
||||
drop_existing_table=True,
|
||||
)
|
||||
|
||||
retriever = docsearch.as_retriever(
|
||||
search_type="similarity_score_threshold",
|
||||
search_kwargs={"k": 3, "score_threshold": 0.997},
|
||||
)
|
||||
output = retriever.get_relevant_documents("foo")
|
||||
assert output == [
|
||||
Document(page_content="foo", metadata={"page": "0"}),
|
||||
Document(page_content="bar", metadata={"page": "1"}),
|
||||
]
|
||||
|
||||
docsearch.drop_vectorstore()
|
@@ -55,6 +55,7 @@ def test_compatible_vectorstore_documentation() -> None:
|
||||
"Chroma",
|
||||
"DashVector",
|
||||
"DatabricksVectorSearch",
|
||||
"TiDBVectorStore",
|
||||
"DeepLake",
|
||||
"Dingo",
|
||||
"DocumentDBVectorSearch",
|
||||
|
@@ -64,6 +64,7 @@ _EXPECTED = [
|
||||
"SupabaseVectorStore",
|
||||
"SurrealDBStore",
|
||||
"Tair",
|
||||
"TiDBVectorStore",
|
||||
"TileDB",
|
||||
"Tigris",
|
||||
"TimescaleVector",
|
||||
|
Reference in New Issue
Block a user