langchain[patch], templates[patch]: fix multi query retriever, web re… (#17434)

…search retriever

Fixes #17352
This commit is contained in:
Bagatur
2024-02-12 22:52:07 -08:00
committed by GitHub
parent c0ce93236a
commit 3925071dd6
4 changed files with 20 additions and 64 deletions

View File

@@ -1,7 +1,3 @@
from typing import List
from langchain.chains import LLMChain
from langchain.output_parsers import PydanticOutputParser
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.chat_models import ChatOllama, ChatOpenAI
@@ -10,7 +6,7 @@ from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
# Load
@@ -29,23 +25,6 @@ vectorstore = Chroma.from_documents(
)
# Output parser will split the LLM result into a list of queries
class LineList(BaseModel):
# "lines" is the key (attribute name) of the parsed output
lines: List[str] = Field(description="Lines of text")
class LineListOutputParser(PydanticOutputParser):
def __init__(self) -> None:
super().__init__(pydantic_object=LineList)
def parse(self, text: str) -> LineList:
lines = text.strip().split("\n")
return LineList(lines=lines)
output_parser = LineListOutputParser()
QUERY_PROMPT = PromptTemplate(
input_variables=["question"],
template="""You are an AI language model assistant. Your task is to generate five
@@ -60,12 +39,9 @@ QUERY_PROMPT = PromptTemplate(
ollama_llm = "zephyr"
llm = ChatOllama(model=ollama_llm)
# Chain
llm_chain = LLMChain(llm=llm, prompt=QUERY_PROMPT, output_parser=output_parser)
# Run
retriever = MultiQueryRetriever(
retriever=vectorstore.as_retriever(), llm_chain=llm_chain, parser_key="lines"
retriever = MultiQueryRetriever.from_llm(
vectorstore.as_retriever(), llm, prompt=QUERY_PROMPT
) # "lines" is the key (attribute name) of the parsed output
# RAG prompt