Add Anthropic ChatModel to langchain (#2293)

* Adds an Anthropic ChatModel
* Factors out common code in our LLMModel and ChatModel
* Supports streaming llm-tokens to the callbacks on a delta basis (until
a future V2 API does that for us)
* Some fixes
This commit is contained in:
Mike Lambert
2023-04-14 18:09:07 -04:00
committed by GitHub
parent 66bef1d7ed
commit 392f1b3218
4 changed files with 316 additions and 84 deletions

View File

@@ -0,0 +1,81 @@
"""Test Anthropic API wrapper."""
from typing import List
import pytest
from langchain.callbacks.base import CallbackManager
from langchain.chat_models.anthropic import ChatAnthropic
from langchain.schema import (
AIMessage,
BaseMessage,
ChatGeneration,
HumanMessage,
LLMResult,
)
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
def test_anthropic_call() -> None:
"""Test valid call to anthropic."""
chat = ChatAnthropic(model="bare-nano-0")
message = HumanMessage(content="Hello")
response = chat([message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
def test_anthropic_streaming() -> None:
"""Test streaming tokens from anthropic."""
chat = ChatAnthropic(model="bare-nano-0", streaming=True)
message = HumanMessage(content="Hello")
response = chat([message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
def test_anthropic_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatAnthropic(
streaming=True,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Write me a sentence with 100 words.")
chat([message])
assert callback_handler.llm_streams > 1
@pytest.mark.asyncio
async def test_anthropic_async_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatAnthropic(
streaming=True,
callback_manager=callback_manager,
verbose=True,
)
chat_messages: List[BaseMessage] = [
HumanMessage(content="How many toes do dogs have?")
]
result: LLMResult = await chat.agenerate([chat_messages])
assert callback_handler.llm_streams > 1
assert isinstance(result, LLMResult)
for response in result.generations[0]:
assert isinstance(response, ChatGeneration)
assert isinstance(response.text, str)
assert response.text == response.message.content
def test_formatting() -> None:
chat = ChatAnthropic()
chat_messages: List[BaseMessage] = [HumanMessage(content="Hello")]
result = chat._convert_messages_to_prompt(chat_messages)
assert result == "\n\nHuman: Hello\n\nAssistant:"
chat_messages = [HumanMessage(content="Hello"), AIMessage(content="Answer:")]
result = chat._convert_messages_to_prompt(chat_messages)
assert result == "\n\nHuman: Hello\n\nAssistant: Answer:"

View File

@@ -32,7 +32,6 @@ def test_anthropic_streaming_callback() -> None:
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = Anthropic(
model="claude-v1",
streaming=True,
callback_manager=callback_manager,
verbose=True,
@@ -55,7 +54,6 @@ async def test_anthropic_async_streaming_callback() -> None:
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = Anthropic(
model="claude-v1",
streaming=True,
callback_manager=callback_manager,
verbose=True,