mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-18 13:31:36 +00:00
langchain: adds recursive json splitter (#17144)
- **Description:** This adds a recursive json splitter class to the existing text_splitters as well as unit tests - **Issue:** splitting text from structured data can cause issues if you have a large nested json object and you split it as regular text you may end up losing the structure of the json. To mitigate against this you can split the nested json into large chunks and overlap them, but this causes unnecessary text processing and there will still be times where the nested json is so big that the chunks get separated from the parent keys. As an example you wouldn't want the following to be split in half: ```shell {'val0': 'DFWeNdWhapbR', 'val1': {'val10': 'QdJo', 'val11': 'FWSDVFHClW', 'val12': 'bkVnXMMlTiQh', 'val13': 'tdDMKRrOY', 'val14': 'zybPALvL', 'val15': 'JMzGMNH', 'val16': {'val160': 'qLuLKusFw', 'val161': 'DGuotLh', 'val162': 'KztlcSBropT', -----------------------------------------------------------------------split----- 'val163': 'YlHHDrN', 'val164': 'CtzsxlGBZKf', 'val165': 'bXzhcrWLmBFp', 'val166': 'zZAqC', 'val167': 'ZtyWno', 'val168': 'nQQZRsLnaBhb', 'val169': 'gSpMbJwA'}, 'val17': 'JhgiyF', 'val18': 'aJaqjUSFFrI', 'val19': 'glqNSvoyxdg'}} ``` Any llm processing the second chunk of text may not have the context of val1, and val16 reducing accuracy. Embeddings will also lack this context and this makes retrieval less accurate. Instead you want it to be split into chunks that retain the json structure. ```shell {'val0': 'DFWeNdWhapbR', 'val1': {'val10': 'QdJo', 'val11': 'FWSDVFHClW', 'val12': 'bkVnXMMlTiQh', 'val13': 'tdDMKRrOY', 'val14': 'zybPALvL', 'val15': 'JMzGMNH', 'val16': {'val160': 'qLuLKusFw', 'val161': 'DGuotLh', 'val162': 'KztlcSBropT', 'val163': 'YlHHDrN', 'val164': 'CtzsxlGBZKf'}}} ``` and ```shell {'val1':{'val16':{ 'val165': 'bXzhcrWLmBFp', 'val166': 'zZAqC', 'val167': 'ZtyWno', 'val168': 'nQQZRsLnaBhb', 'val169': 'gSpMbJwA'}, 'val17': 'JhgiyF', 'val18': 'aJaqjUSFFrI', 'val19': 'glqNSvoyxdg'}} ``` This recursive json text splitter does this. Values that contain a list can be converted to dict first by using split(... convert_lists=True) otherwise long lists will not be split and you may end up with chunks larger than the max chunk. In my testing large json objects could be split into small chunks with ✅ Increased question answering accuracy ✅ The ability to split into smaller chunks meant retrieval queries can use fewer tokens - **Dependencies:** json import added to text_splitter.py, and random added to the unit test - **Twitter handle:** @joelsprunger --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
parent
f0ada1a396
commit
3984f6604f
@ -0,0 +1,225 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a678d550",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Recursively split JSON\n",
|
||||
"\n",
|
||||
"This json splitter traverses json data depth first and builds smaller json chunks. It attempts to keep nested json objects whole but will split them if needed to keep chunks between a min_chunk_size and the max_chunk_size. If the value is not a nested json, but rather a very large string the string will not be split. If you need a hard cap on the chunk size considder following this with a Recursive Text splitter on those chunks. There is an optional pre-processing step to split lists, by first converting them to json (dict) and then splitting them as such.\n",
|
||||
"\n",
|
||||
"1. How the text is split: json value.\n",
|
||||
"2. How the chunk size is measured: by number of characters."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "a504e1e7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import requests"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "3390ae1d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This is a large nested json object and will be loaded as a python dict\n",
|
||||
"json_data = requests.get(\"https://api.smith.langchain.com/openapi.json\").json()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "7bfe2c1e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.text_splitter import RecursiveJsonSplitter"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "2833c409",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"splitter = RecursiveJsonSplitter(max_chunk_size=300)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "f941aa56",
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Recursively split json data - If you need to access/manipulate the smaller json chunks\n",
|
||||
"json_chunks = splitter.split_json(json_data=json_data)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "0839f4f0",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{\"openapi\": \"3.0.2\", \"info\": {\"title\": \"LangChainPlus\", \"version\": \"0.1.0\"}, \"paths\": {\"/sessions/{session_id}\": {\"get\": {\"tags\": [\"tracer-sessions\"], \"summary\": \"Read Tracer Session\", \"description\": \"Get a specific session.\", \"operationId\": \"read_tracer_session_sessions__session_id__get\"}}}}\n",
|
||||
"{\"paths\": {\"/sessions/{session_id}\": {\"get\": {\"parameters\": [{\"required\": true, \"schema\": {\"title\": \"Session Id\", \"type\": \"string\", \"format\": \"uuid\"}, \"name\": \"session_id\", \"in\": \"path\"}, {\"required\": false, \"schema\": {\"title\": \"Include Stats\", \"type\": \"boolean\", \"default\": false}, \"name\": \"include_stats\", \"in\": \"query\"}, {\"required\": false, \"schema\": {\"title\": \"Accept\", \"type\": \"string\"}, \"name\": \"accept\", \"in\": \"header\"}]}}}}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# The splitter can also output documents\n",
|
||||
"docs = splitter.create_documents(texts=[json_data])\n",
|
||||
"\n",
|
||||
"# or a list of strings\n",
|
||||
"texts = splitter.split_text(json_data=json_data)\n",
|
||||
"\n",
|
||||
"print(texts[0])\n",
|
||||
"print(texts[1])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "c34b1f7f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[293, 431, 203, 277, 230, 194, 162, 280, 223, 193]\n",
|
||||
"{\"paths\": {\"/sessions/{session_id}\": {\"get\": {\"parameters\": [{\"required\": true, \"schema\": {\"title\": \"Session Id\", \"type\": \"string\", \"format\": \"uuid\"}, \"name\": \"session_id\", \"in\": \"path\"}, {\"required\": false, \"schema\": {\"title\": \"Include Stats\", \"type\": \"boolean\", \"default\": false}, \"name\": \"include_stats\", \"in\": \"query\"}, {\"required\": false, \"schema\": {\"title\": \"Accept\", \"type\": \"string\"}, \"name\": \"accept\", \"in\": \"header\"}]}}}}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Let's look at the size of the chunks\n",
|
||||
"print([len(text) for text in texts][:10])\n",
|
||||
"\n",
|
||||
"# Reviewing one of these chunks that was bigger we see there is a list object there\n",
|
||||
"print(texts[1])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "992477c2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# The json splitter by default does not split lists\n",
|
||||
"# the following will preprocess the json and convert list to dict with index:item as key:val pairs\n",
|
||||
"texts = splitter.split_text(json_data=json_data, convert_lists=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "2d23b3aa",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[293, 431, 203, 277, 230, 194, 162, 280, 223, 193]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Let's look at the size of the chunks. Now they are all under the max\n",
|
||||
"print([len(text) for text in texts][:10])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "d2c2773e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{\"paths\": {\"/sessions/{session_id}\": {\"get\": {\"parameters\": [{\"required\": true, \"schema\": {\"title\": \"Session Id\", \"type\": \"string\", \"format\": \"uuid\"}, \"name\": \"session_id\", \"in\": \"path\"}, {\"required\": false, \"schema\": {\"title\": \"Include Stats\", \"type\": \"boolean\", \"default\": false}, \"name\": \"include_stats\", \"in\": \"query\"}, {\"required\": false, \"schema\": {\"title\": \"Accept\", \"type\": \"string\"}, \"name\": \"accept\", \"in\": \"header\"}]}}}}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# The list has been converted to a dict, but retains all the needed contextual information even if split into many chunks\n",
|
||||
"print(texts[1])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "8963b01a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Document(page_content='{\"paths\": {\"/sessions/{session_id}\": {\"get\": {\"parameters\": [{\"required\": true, \"schema\": {\"title\": \"Session Id\", \"type\": \"string\", \"format\": \"uuid\"}, \"name\": \"session_id\", \"in\": \"path\"}, {\"required\": false, \"schema\": {\"title\": \"Include Stats\", \"type\": \"boolean\", \"default\": false}, \"name\": \"include_stats\", \"in\": \"query\"}, {\"required\": false, \"schema\": {\"title\": \"Accept\", \"type\": \"string\"}, \"name\": \"accept\", \"in\": \"header\"}]}}}}')"
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# We can also look at the documents\n",
|
||||
"docs[1]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "168da4f0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -22,6 +22,7 @@ Note: **MarkdownHeaderTextSplitter** and **HTMLHeaderTextSplitter do not derive
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import json
|
||||
import logging
|
||||
import pathlib
|
||||
import re
|
||||
@ -1489,3 +1490,116 @@ class LatexTextSplitter(RecursiveCharacterTextSplitter):
|
||||
"""Initialize a LatexTextSplitter."""
|
||||
separators = self.get_separators_for_language(Language.LATEX)
|
||||
super().__init__(separators=separators, **kwargs)
|
||||
|
||||
|
||||
class RecursiveJsonSplitter:
|
||||
def __init__(
|
||||
self, max_chunk_size: int = 2000, min_chunk_size: Optional[int] = None
|
||||
):
|
||||
super().__init__()
|
||||
self.max_chunk_size = max_chunk_size
|
||||
self.min_chunk_size = (
|
||||
min_chunk_size
|
||||
if min_chunk_size is not None
|
||||
else max(max_chunk_size - 200, 50)
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _json_size(data: Dict) -> int:
|
||||
"""Calculate the size of the serialized JSON object."""
|
||||
return len(json.dumps(data))
|
||||
|
||||
@staticmethod
|
||||
def _set_nested_dict(d: Dict, path: List[str], value: Any) -> None:
|
||||
"""Set a value in a nested dictionary based on the given path."""
|
||||
for key in path[:-1]:
|
||||
d = d.setdefault(key, {})
|
||||
d[path[-1]] = value
|
||||
|
||||
def _list_to_dict_preprocessing(self, data: Any) -> Any:
|
||||
if isinstance(data, dict):
|
||||
# Process each key-value pair in the dictionary
|
||||
return {k: self._list_to_dict_preprocessing(v) for k, v in data.items()}
|
||||
elif isinstance(data, list):
|
||||
# Convert the list to a dictionary with index-based keys
|
||||
return {
|
||||
str(i): self._list_to_dict_preprocessing(item)
|
||||
for i, item in enumerate(data)
|
||||
}
|
||||
else:
|
||||
# Base case: the item is neither a dict nor a list, so return it unchanged
|
||||
return data
|
||||
|
||||
def _json_split(
|
||||
self,
|
||||
data: Dict[str, Any],
|
||||
current_path: List[str] = [],
|
||||
chunks: List[Dict] = [{}],
|
||||
) -> List[Dict]:
|
||||
"""
|
||||
Split json into maximum size dictionaries while preserving structure.
|
||||
"""
|
||||
if isinstance(data, dict):
|
||||
for key, value in data.items():
|
||||
new_path = current_path + [key]
|
||||
chunk_size = self._json_size(chunks[-1])
|
||||
size = self._json_size({key: value})
|
||||
remaining = self.max_chunk_size - chunk_size
|
||||
|
||||
if size < remaining:
|
||||
# Add item to current chunk
|
||||
self._set_nested_dict(chunks[-1], new_path, value)
|
||||
else:
|
||||
if chunk_size >= self.min_chunk_size:
|
||||
# Chunk is big enough, start a new chunk
|
||||
chunks.append({})
|
||||
|
||||
# Iterate
|
||||
self._json_split(value, new_path, chunks)
|
||||
else:
|
||||
# handle single item
|
||||
self._set_nested_dict(chunks[-1], current_path, data)
|
||||
return chunks
|
||||
|
||||
def split_json(
|
||||
self,
|
||||
json_data: Dict[str, Any],
|
||||
convert_lists: bool = False,
|
||||
) -> List[Dict]:
|
||||
"""Splits JSON into a list of JSON chunks"""
|
||||
|
||||
if convert_lists:
|
||||
chunks = self._json_split(self._list_to_dict_preprocessing(json_data))
|
||||
else:
|
||||
chunks = self._json_split(json_data)
|
||||
|
||||
# Remove the last chunk if it's empty
|
||||
if not chunks[-1]:
|
||||
chunks.pop()
|
||||
return chunks
|
||||
|
||||
def split_text(
|
||||
self, json_data: Dict[str, Any], convert_lists: bool = False
|
||||
) -> List[str]:
|
||||
"""Splits JSON into a list of JSON formatted strings"""
|
||||
|
||||
chunks = self.split_json(json_data=json_data, convert_lists=convert_lists)
|
||||
|
||||
# Convert to string
|
||||
return [json.dumps(chunk) for chunk in chunks]
|
||||
|
||||
def create_documents(
|
||||
self,
|
||||
texts: List[Dict],
|
||||
convert_lists: bool = False,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
) -> List[Document]:
|
||||
"""Create documents from a list of json objects (Dict)."""
|
||||
_metadatas = metadatas or [{}] * len(texts)
|
||||
documents = []
|
||||
for i, text in enumerate(texts):
|
||||
for chunk in self.split_text(json_data=text, convert_lists=convert_lists):
|
||||
metadata = copy.deepcopy(_metadatas[i])
|
||||
new_doc = Document(page_content=chunk, metadata=metadata)
|
||||
documents.append(new_doc)
|
||||
return documents
|
||||
|
@ -1,7 +1,9 @@
|
||||
"""Test text splitting functionality."""
|
||||
import random
|
||||
import re
|
||||
import string
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
from typing import Any, List
|
||||
|
||||
import pytest
|
||||
from langchain_core.documents import Document
|
||||
@ -13,6 +15,7 @@ from langchain.text_splitter import (
|
||||
MarkdownHeaderTextSplitter,
|
||||
PythonCodeTextSplitter,
|
||||
RecursiveCharacterTextSplitter,
|
||||
RecursiveJsonSplitter,
|
||||
TextSplitter,
|
||||
Tokenizer,
|
||||
split_text_on_tokens,
|
||||
@ -1302,3 +1305,48 @@ def test_split_text_on_tokens() -> None:
|
||||
output = split_text_on_tokens(text=text, tokenizer=tokenizer)
|
||||
expected_output = ["foo bar", "bar baz", "baz 123"]
|
||||
assert output == expected_output
|
||||
|
||||
|
||||
def test_split_json() -> None:
|
||||
"""Test json text splitter"""
|
||||
max_chunk = 800
|
||||
splitter = RecursiveJsonSplitter(max_chunk_size=max_chunk)
|
||||
|
||||
def random_val() -> str:
|
||||
return "".join(random.choices(string.ascii_letters, k=random.randint(4, 12)))
|
||||
|
||||
test_data: Any = {
|
||||
"val0": random_val(),
|
||||
"val1": {f"val1{i}": random_val() for i in range(100)},
|
||||
}
|
||||
test_data["val1"]["val16"] = {f"val16{i}": random_val() for i in range(100)}
|
||||
|
||||
# uses create_docs and split_text
|
||||
docs = splitter.create_documents(texts=[test_data])
|
||||
|
||||
output = [len(doc.page_content) < max_chunk * 1.05 for doc in docs]
|
||||
expected_output = [True for doc in docs]
|
||||
assert output == expected_output
|
||||
|
||||
|
||||
def test_split_json_with_lists() -> None:
|
||||
"""Test json text splitter with list conversion"""
|
||||
max_chunk = 800
|
||||
splitter = RecursiveJsonSplitter(max_chunk_size=max_chunk)
|
||||
|
||||
def random_val() -> str:
|
||||
return "".join(random.choices(string.ascii_letters, k=random.randint(4, 12)))
|
||||
|
||||
test_data: Any = {
|
||||
"val0": random_val(),
|
||||
"val1": {f"val1{i}": random_val() for i in range(100)},
|
||||
}
|
||||
test_data["val1"]["val16"] = {f"val16{i}": random_val() for i in range(100)}
|
||||
|
||||
test_data_list: Any = {"testPreprocessing": [test_data]}
|
||||
|
||||
# test text splitter
|
||||
texts = splitter.split_text(json_data=test_data)
|
||||
texts_list = splitter.split_text(json_data=test_data_list, convert_lists=True)
|
||||
|
||||
assert len(texts_list) >= len(texts)
|
||||
|
Loading…
Reference in New Issue
Block a user