mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-02 03:26:17 +00:00
community[minor]: Add ITREX optimized Embeddings (#18474)
Introduction [Intel® Extension for Transformers](https://github.com/intel/intel-extension-for-transformers) is an innovative toolkit designed to accelerate GenAI/LLM everywhere with the optimal performance of Transformer-based models on various Intel platforms Description adding ITREX runtime embeddings using intel-extension-for-transformers. added mdx documentation and example notebooks added embedding import testing. --------- Signed-off-by: yuwenzho <yuwen.zhou@intel.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
214
libs/community/langchain_community/embeddings/itrex.py
Normal file
214
libs/community/langchain_community/embeddings/itrex.py
Normal file
@@ -0,0 +1,214 @@
|
||||
import importlib.util
|
||||
import os
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, Extra
|
||||
|
||||
|
||||
class QuantizedBgeEmbeddings(BaseModel, Embeddings):
|
||||
"""Leverage Itrex runtime to unlock the performance of compressed NLP models.
|
||||
|
||||
Please ensure that you have installed intel-extension-for-transformers.
|
||||
|
||||
Input:
|
||||
model_name: str = Model name.
|
||||
max_seq_len: int = The maximum sequence length for tokenization. (default 512)
|
||||
pooling_strategy: str =
|
||||
"mean" or "cls", pooling strategy for the final layer. (default "mean")
|
||||
query_instruction: Optional[str] =
|
||||
An instruction to add to the query before embedding. (default None)
|
||||
document_instruction: Optional[str] =
|
||||
An instruction to add to each document before embedding. (default None)
|
||||
padding: Optional[bool] =
|
||||
Whether to add padding during tokenization or not. (default True)
|
||||
model_kwargs: Optional[Dict] =
|
||||
Parameters to add to the model during initialization. (default {})
|
||||
encode_kwargs: Optional[Dict] =
|
||||
Parameters to add during the embedding forward pass. (default {})
|
||||
onnx_file_name: Optional[str] =
|
||||
File name of onnx optimized model which is exported by itrex.
|
||||
(default "int8-model.onnx")
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings import QuantizedBgeEmbeddings
|
||||
|
||||
model_name = "Intel/bge-small-en-v1.5-sts-int8-static-inc"
|
||||
encode_kwargs = {'normalize_embeddings': True}
|
||||
hf = QuantizedBgeEmbeddings(
|
||||
model_name,
|
||||
encode_kwargs=encode_kwargs,
|
||||
query_instruction="Represent this sentence for searching relevant passages: "
|
||||
)
|
||||
""" # noqa: E501
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
*,
|
||||
max_seq_len: int = 512,
|
||||
pooling_strategy: str = "mean", # "mean" or "cls"
|
||||
query_instruction: Optional[str] = None,
|
||||
document_instruction: Optional[str] = None,
|
||||
padding: bool = True,
|
||||
model_kwargs: Optional[Dict] = None,
|
||||
encode_kwargs: Optional[Dict] = None,
|
||||
onnx_file_name: Optional[str] = "int8-model.onnx",
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# check sentence_transformers python package
|
||||
if importlib.util.find_spec("intel_extension_for_transformers") is None:
|
||||
raise ImportError(
|
||||
"Could not import intel_extension_for_transformers python package. "
|
||||
"Please install it with "
|
||||
"`pip install -U intel-extension-for-transformers`."
|
||||
)
|
||||
|
||||
# check torch python package
|
||||
if importlib.util.find_spec("torch") is None:
|
||||
raise ImportError(
|
||||
"Could not import torch python package. "
|
||||
"Please install it with `pip install -U torch`."
|
||||
)
|
||||
|
||||
# check onnx python package
|
||||
if importlib.util.find_spec("onnx") is None:
|
||||
raise ImportError(
|
||||
"Could not import onnx python package. "
|
||||
"Please install it with `pip install -U onnx`."
|
||||
)
|
||||
|
||||
self.model_name_or_path = model_name
|
||||
self.max_seq_len = max_seq_len
|
||||
self.pooling = pooling_strategy
|
||||
self.padding = padding
|
||||
self.encode_kwargs = encode_kwargs or {}
|
||||
self.model_kwargs = model_kwargs or {}
|
||||
|
||||
self.normalize = self.encode_kwargs.get("normalize_embeddings", False)
|
||||
self.batch_size = self.encode_kwargs.get("batch_size", 32)
|
||||
|
||||
self.query_instruction = query_instruction
|
||||
self.document_instruction = document_instruction
|
||||
self.onnx_file_name = onnx_file_name
|
||||
|
||||
self.load_model()
|
||||
|
||||
def load_model(self) -> None:
|
||||
from huggingface_hub import hf_hub_download
|
||||
from intel_extension_for_transformers.transformers import AutoModel
|
||||
from transformers import AutoConfig, AutoTokenizer
|
||||
|
||||
self.hidden_size = AutoConfig.from_pretrained(
|
||||
self.model_name_or_path
|
||||
).hidden_size
|
||||
self.transformer_tokenizer = AutoTokenizer.from_pretrained(
|
||||
self.model_name_or_path,
|
||||
)
|
||||
onnx_model_path = os.path.join(self.model_name_or_path, self.onnx_file_name) # type: ignore[arg-type]
|
||||
if not os.path.exists(onnx_model_path):
|
||||
onnx_model_path = hf_hub_download(
|
||||
self.model_name_or_path, filename=self.onnx_file_name
|
||||
)
|
||||
self.transformer_model = AutoModel.from_pretrained(
|
||||
onnx_model_path, use_embedding_runtime=True
|
||||
)
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.allow
|
||||
|
||||
def _embed(self, inputs: Any) -> Any:
|
||||
import torch
|
||||
|
||||
engine_input = [value for value in inputs.values()]
|
||||
outputs = self.transformer_model.generate(engine_input)
|
||||
if "last_hidden_state:0" in outputs:
|
||||
last_hidden_state = outputs["last_hidden_state:0"]
|
||||
else:
|
||||
last_hidden_state = [out for out in outputs.values()][0]
|
||||
last_hidden_state = torch.tensor(last_hidden_state).reshape(
|
||||
inputs["input_ids"].shape[0], inputs["input_ids"].shape[1], self.hidden_size
|
||||
)
|
||||
if self.pooling == "mean":
|
||||
emb = self._mean_pooling(last_hidden_state, inputs["attention_mask"])
|
||||
elif self.pooling == "cls":
|
||||
emb = self._cls_pooling(last_hidden_state)
|
||||
else:
|
||||
raise ValueError("pooling method no supported")
|
||||
|
||||
if self.normalize:
|
||||
emb = torch.nn.functional.normalize(emb, p=2, dim=1)
|
||||
return emb
|
||||
|
||||
@staticmethod
|
||||
def _cls_pooling(last_hidden_state: Any) -> Any:
|
||||
return last_hidden_state[:, 0]
|
||||
|
||||
@staticmethod
|
||||
def _mean_pooling(last_hidden_state: Any, attention_mask: Any) -> Any:
|
||||
try:
|
||||
import torch
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"Unable to import torch, please install with `pip install -U torch`."
|
||||
) from e
|
||||
input_mask_expanded = (
|
||||
attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
||||
)
|
||||
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1)
|
||||
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
||||
return sum_embeddings / sum_mask
|
||||
|
||||
def _embed_text(self, texts: List[str]) -> List[List[float]]:
|
||||
inputs = self.transformer_tokenizer(
|
||||
texts,
|
||||
max_length=self.max_seq_len,
|
||||
truncation=True,
|
||||
padding=self.padding,
|
||||
return_tensors="pt",
|
||||
)
|
||||
return self._embed(inputs).tolist()
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Embed a list of text documents using the Optimized Embedder model.
|
||||
|
||||
Input:
|
||||
texts: List[str] = List of text documents to embed.
|
||||
Output:
|
||||
List[List[float]] = The embeddings of each text document.
|
||||
"""
|
||||
try:
|
||||
import pandas as pd
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"Unable to import pandas, please install with `pip install -U pandas`."
|
||||
) from e
|
||||
docs = [
|
||||
self.document_instruction + d if self.document_instruction else d
|
||||
for d in texts
|
||||
]
|
||||
|
||||
# group into batches
|
||||
text_list_df = pd.DataFrame(docs, columns=["texts"]).reset_index()
|
||||
|
||||
# assign each example with its batch
|
||||
text_list_df["batch_index"] = text_list_df["index"] // self.batch_size
|
||||
|
||||
# create groups
|
||||
batches = list(text_list_df.groupby(["batch_index"])["texts"].apply(list))
|
||||
|
||||
vectors = []
|
||||
for batch in batches:
|
||||
vectors += self._embed_text(batch)
|
||||
return vectors
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
if self.query_instruction:
|
||||
text = self.query_instruction + text
|
||||
return self._embed_text([text])[0]
|
Reference in New Issue
Block a user