mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-19 03:01:29 +00:00
docs(groq): cleanup (#32043)
This commit is contained in:
parent
02d0a9af6c
commit
3b9dd1eba0
@ -159,8 +159,7 @@ class ChatGroq(BaseChatModel):
|
||||
.. code-block:: python
|
||||
|
||||
messages = [
|
||||
("system", "You are a helpful translator. Translate the user
|
||||
sentence to French."),
|
||||
("system", "You are a helpful translator. Translate the user sentence to French."),
|
||||
("human", "I love programming."),
|
||||
]
|
||||
llm.invoke(messages)
|
||||
@ -244,14 +243,12 @@ class ChatGroq(BaseChatModel):
|
||||
class GetWeather(BaseModel):
|
||||
'''Get the current weather in a given location'''
|
||||
|
||||
location: str = Field(..., description="The city and state,
|
||||
e.g. San Francisco, CA")
|
||||
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
|
||||
|
||||
class GetPopulation(BaseModel):
|
||||
'''Get the current population in a given location'''
|
||||
|
||||
location: str = Field(..., description="The city and state,
|
||||
e.g. San Francisco, CA")
|
||||
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
|
||||
|
||||
model_with_tools = llm.bind_tools([GetWeather, GetPopulation])
|
||||
ai_msg = model_with_tools.invoke("What is the population of NY?")
|
||||
@ -277,16 +274,14 @@ class ChatGroq(BaseChatModel):
|
||||
|
||||
setup: str = Field(description="The setup of the joke")
|
||||
punchline: str = Field(description="The punchline to the joke")
|
||||
rating: Optional[int] = Field(description="How funny the joke
|
||||
is, from 1 to 10")
|
||||
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
|
||||
|
||||
structured_model = llm.with_structured_output(Joke)
|
||||
structured_model.invoke("Tell me a joke about cats")
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
Joke(setup="Why don't cats play poker in the jungle?",
|
||||
punchline='Too many cheetahs!', rating=None)
|
||||
Joke(setup="Why don't cats play poker in the jungle?", punchline='Too many cheetahs!', rating=None)
|
||||
|
||||
See ``ChatGroq.with_structured_output()`` for more.
|
||||
|
||||
@ -309,7 +304,7 @@ class ChatGroq(BaseChatModel):
|
||||
'system_fingerprint': 'fp_c5f20b5bb1',
|
||||
'finish_reason': 'stop',
|
||||
'logprobs': None}
|
||||
"""
|
||||
""" # noqa: E501
|
||||
|
||||
client: Any = Field(default=None, exclude=True) #: :meta private:
|
||||
async_client: Any = Field(default=None, exclude=True) #: :meta private:
|
||||
@ -834,7 +829,7 @@ class ChatGroq(BaseChatModel):
|
||||
"auto" to automatically determine which function to call
|
||||
with the option to not call any function, "any" to enforce that some
|
||||
function is called, or a dict of the form:
|
||||
{"type": "function", "function": {"name": <<tool_name>>}}.
|
||||
``{"type": "function", "function": {"name": <<tool_name>>}}``.
|
||||
**kwargs: Any additional parameters to pass to the
|
||||
:class:`~langchain.runnable.Runnable` constructor.
|
||||
|
||||
@ -876,10 +871,12 @@ class ChatGroq(BaseChatModel):
|
||||
Args:
|
||||
schema:
|
||||
The output schema. Can be passed in as:
|
||||
|
||||
- an OpenAI function/tool schema,
|
||||
- a JSON Schema,
|
||||
- a TypedDict class (supported added in 0.1.9),
|
||||
- or a Pydantic class.
|
||||
|
||||
If ``schema`` is a Pydantic class then the model output will be a
|
||||
Pydantic instance of that class, and the model-generated fields will be
|
||||
validated by the Pydantic class. Otherwise the model output will be a
|
||||
@ -891,19 +888,27 @@ class ChatGroq(BaseChatModel):
|
||||
|
||||
Added support for TypedDict class.
|
||||
method:
|
||||
The method for steering model generation, either "function_calling"
|
||||
or "json_mode". If "function_calling" then the schema will be converted
|
||||
The method for steering model generation, either ``'function_calling'``
|
||||
or ``'json_mode'``. If ``'function_calling'`` then the schema will be converted
|
||||
to an OpenAI function and the returned model will make use of the
|
||||
function-calling API. If "json_mode" then OpenAI's JSON mode will be
|
||||
used. Note that if using "json_mode" then you must include instructions
|
||||
for formatting the output into the desired schema into the model call.
|
||||
function-calling API. If ``'json_mode'`` then OpenAI's JSON mode will be
|
||||
used.
|
||||
|
||||
.. note::
|
||||
If using ``'json_mode'`` then you must include instructions for formatting
|
||||
the output into the desired schema into the model call. (either via the
|
||||
prompt itself or in the system message/prompt/instructions).
|
||||
|
||||
.. warning::
|
||||
``'json_mode'`` does not support streaming responses stop sequences.
|
||||
|
||||
include_raw:
|
||||
If False then only the parsed structured output is returned. If
|
||||
an error occurs during model output parsing it will be raised. If True
|
||||
then both the raw model response (a BaseMessage) and the parsed model
|
||||
response will be returned. If an error occurs during output parsing it
|
||||
will be caught and returned as well. The final output is always a dict
|
||||
with keys "raw", "parsed", and "parsing_error".
|
||||
with keys ``'raw'``, ``'parsed'``, and ``'parsing_error'``.
|
||||
kwargs:
|
||||
Any additional parameters to pass to the
|
||||
:class:`~langchain.runnable.Runnable` constructor.
|
||||
@ -917,6 +922,7 @@ class ChatGroq(BaseChatModel):
|
||||
Otherwise, if ``include_raw`` is False then Runnable outputs a dict.
|
||||
|
||||
If ``include_raw`` is True, then Runnable outputs a dict with keys:
|
||||
|
||||
- ``"raw"``: BaseMessage
|
||||
- ``"parsed"``: None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
|
||||
- ``"parsing_error"``: Optional[BaseException]
|
||||
|
Loading…
Reference in New Issue
Block a user