mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-06 05:25:04 +00:00
Tool Retrieval Template (#13104)
Adds a template like https://python.langchain.com/docs/modules/agents/how_to/custom_agent_with_tool_retrieval Uses OpenAI functions, LCEL, and FAISS
This commit is contained in:
@@ -0,0 +1,123 @@
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
from langchain.agents import (
|
||||
AgentExecutor,
|
||||
Tool,
|
||||
)
|
||||
from langchain.agents.format_scratchpad import format_to_openai_functions
|
||||
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.prompts import (
|
||||
ChatPromptTemplate,
|
||||
MessagesPlaceholder,
|
||||
)
|
||||
from langchain.pydantic_v1 import BaseModel, Field
|
||||
from langchain.schema import Document
|
||||
from langchain.schema.messages import AIMessage, HumanMessage
|
||||
from langchain.schema.runnable import Runnable, RunnableLambda, RunnableParallel
|
||||
from langchain.tools.base import BaseTool
|
||||
from langchain.tools.render import format_tool_to_openai_function
|
||||
from langchain.tools.tavily_search import TavilySearchResults
|
||||
from langchain.utilities.tavily_search import TavilySearchAPIWrapper
|
||||
from langchain.vectorstores import FAISS
|
||||
|
||||
# Create the tools
|
||||
search = TavilySearchAPIWrapper()
|
||||
description = """"Useful for when you need to answer questions \
|
||||
about current events or about recent information."""
|
||||
tavily_tool = TavilySearchResults(api_wrapper=search, description=description)
|
||||
|
||||
|
||||
def fake_func(inp: str) -> str:
|
||||
return "foo"
|
||||
|
||||
|
||||
fake_tools = [
|
||||
Tool(
|
||||
name=f"foo-{i}",
|
||||
func=fake_func,
|
||||
description=("a silly function that gets info " f"about the number {i}"),
|
||||
)
|
||||
for i in range(99)
|
||||
]
|
||||
ALL_TOOLS: List[BaseTool] = [tavily_tool] + fake_tools
|
||||
|
||||
# turn tools into documents for indexing
|
||||
docs = [
|
||||
Document(page_content=t.description, metadata={"index": i})
|
||||
for i, t in enumerate(ALL_TOOLS)
|
||||
]
|
||||
|
||||
vector_store = FAISS.from_documents(docs, OpenAIEmbeddings())
|
||||
|
||||
retriever = vector_store.as_retriever()
|
||||
|
||||
|
||||
def get_tools(query: str) -> List[Tool]:
|
||||
docs = retriever.get_relevant_documents(query)
|
||||
return [ALL_TOOLS[d.metadata["index"]] for d in docs]
|
||||
|
||||
|
||||
assistant_system_message = """You are a helpful assistant. \
|
||||
Use tools (only if necessary) to best answer the users questions."""
|
||||
assistant_system_message = """You are a helpful assistant. \
|
||||
Use tools (only if necessary) to best answer the users questions."""
|
||||
prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
("system", assistant_system_message),
|
||||
MessagesPlaceholder(variable_name="chat_history"),
|
||||
("user", "{input}"),
|
||||
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def llm_with_tools(input: Dict) -> Runnable:
|
||||
return RunnableLambda(lambda x: x["input"]) | ChatOpenAI(temperature=0).bind(
|
||||
functions=input["functions"]
|
||||
)
|
||||
|
||||
|
||||
def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
||||
buffer = []
|
||||
for human, ai in chat_history:
|
||||
buffer.append(HumanMessage(content=human))
|
||||
buffer.append(AIMessage(content=ai))
|
||||
return buffer
|
||||
|
||||
|
||||
agent = (
|
||||
RunnableParallel(
|
||||
{
|
||||
"input": lambda x: x["input"],
|
||||
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
|
||||
"agent_scratchpad": lambda x: format_to_openai_functions(
|
||||
x["intermediate_steps"]
|
||||
),
|
||||
"functions": lambda x: [
|
||||
format_tool_to_openai_function(tool) for tool in get_tools(x["input"])
|
||||
],
|
||||
}
|
||||
)
|
||||
| {
|
||||
"input": prompt,
|
||||
"functions": lambda x: x["functions"],
|
||||
}
|
||||
| llm_with_tools
|
||||
| OpenAIFunctionsAgentOutputParser()
|
||||
)
|
||||
|
||||
# LLM chain consisting of the LLM and a prompt
|
||||
|
||||
|
||||
class AgentInput(BaseModel):
|
||||
input: str
|
||||
chat_history: List[Tuple[str, str]] = Field(
|
||||
..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}}
|
||||
)
|
||||
|
||||
|
||||
agent_executor = AgentExecutor(agent=agent, tools=ALL_TOOLS).with_types(
|
||||
input_type=AgentInput
|
||||
)
|
Reference in New Issue
Block a user