mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-14 14:05:37 +00:00
templates: Add neo4j semantic layer template (#15652)
Co-authored-by: Tomaz Bratanic <tomazbratanic@Tomazs-MacBook-Pro.local> Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
71
templates/neo4j-semantic-layer/neo4j_semantic_layer/agent.py
Normal file
71
templates/neo4j-semantic-layer/neo4j_semantic_layer/agent.py
Normal file
@@ -0,0 +1,71 @@
|
||||
from typing import List, Tuple
|
||||
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.agents.format_scratchpad import format_to_openai_function_messages
|
||||
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
||||
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain.pydantic_v1 import BaseModel, Field
|
||||
from langchain.schema import AIMessage, HumanMessage
|
||||
from langchain.tools.render import format_tool_to_openai_function
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
|
||||
from neo4j_semantic_layer.information_tool import InformationTool
|
||||
from neo4j_semantic_layer.memory_tool import MemoryTool
|
||||
from neo4j_semantic_layer.recommendation_tool import RecommenderTool
|
||||
|
||||
llm = ChatOpenAI(temperature=0, model="gpt-4")
|
||||
tools = [InformationTool(), RecommenderTool(), MemoryTool()]
|
||||
|
||||
llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])
|
||||
|
||||
prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
(
|
||||
"system",
|
||||
"You are a helpful assistant that finds information about movies "
|
||||
" and recommends them. If tools require follow up questions, "
|
||||
"make sure to ask the user for clarification. Make sure to include any "
|
||||
"available options that need to be clarified in the follow up questions",
|
||||
),
|
||||
MessagesPlaceholder(variable_name="chat_history"),
|
||||
("user", "{input}"),
|
||||
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
||||
buffer = []
|
||||
for human, ai in chat_history:
|
||||
buffer.append(HumanMessage(content=human))
|
||||
buffer.append(AIMessage(content=ai))
|
||||
return buffer
|
||||
|
||||
|
||||
agent = (
|
||||
{
|
||||
"input": lambda x: x["input"],
|
||||
"chat_history": lambda x: _format_chat_history(x["chat_history"])
|
||||
if x.get("chat_history")
|
||||
else [],
|
||||
"agent_scratchpad": lambda x: format_to_openai_function_messages(
|
||||
x["intermediate_steps"]
|
||||
),
|
||||
}
|
||||
| prompt
|
||||
| llm_with_tools
|
||||
| OpenAIFunctionsAgentOutputParser()
|
||||
)
|
||||
|
||||
|
||||
# Add typing for input
|
||||
class AgentInput(BaseModel):
|
||||
input: str
|
||||
chat_history: List[Tuple[str, str]] = Field(
|
||||
..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}}
|
||||
)
|
||||
|
||||
|
||||
agent_executor = AgentExecutor(agent=agent, tools=tools).with_types(
|
||||
input_type=AgentInput
|
||||
)
|
Reference in New Issue
Block a user