mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-07 05:30:39 +00:00
Add Baichuan chat model (#11923)
Description: A large language models developed by Baichuan Intelligent Technology,https://www.baichuan-ai.com/home Issue: None Dependencies: None Tag maintainer: Twitter handle:
This commit is contained in:
parent
9ecb7240a4
commit
3fb5e4d185
157
docs/docs/integrations/chat/baichuan.ipynb
Normal file
157
docs/docs/integrations/chat/baichuan.ipynb
Normal file
@ -0,0 +1,157 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Baichuan Chat\n",
|
||||||
|
"\n",
|
||||||
|
"Baichuan chat models API by Baichuan Intelligent Technology. For more information, see [https://platform.baichuan-ai.com/docs/api](https://platform.baichuan-ai.com/docs/api)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-10-17T15:14:24.186131Z",
|
||||||
|
"start_time": "2023-10-17T15:14:23.831767Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.chat_models import ChatBaichuan\n",
|
||||||
|
"from langchain.schema import HumanMessage"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-10-17T15:14:24.191123Z",
|
||||||
|
"start_time": "2023-10-17T15:14:24.186330Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"chat = ChatBaichuan(\n",
|
||||||
|
" baichuan_api_key='YOUR_API_KEY',\n",
|
||||||
|
" baichuan_secret_key='YOUR_SECRET_KEY'\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"or you can set `api_key` and `secret_key` in your environment variables\n",
|
||||||
|
"```bash\n",
|
||||||
|
"export BAICHUAN_API_KEY=YOUR_API_KEY\n",
|
||||||
|
"export BAICHUAN_SECRET_KEY=YOUR_SECRET_KEY\n",
|
||||||
|
"```"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-10-17T15:14:25.853218Z",
|
||||||
|
"start_time": "2023-10-17T15:14:24.192408Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": "AIMessage(content='首先,我们需要确定闰年的二月有多少天。闰年的二月有29天。\\n\\n然后,我们可以计算你的月薪:\\n\\n日薪 = 月薪 / (当月天数)\\n\\n所以,你的月薪 = 日薪 * 当月天数\\n\\n将数值代入公式:\\n\\n月薪 = 8元/天 * 29天 = 232元\\n\\n因此,你在闰年的二月的月薪是232元。')"
|
||||||
|
},
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"chat([\n",
|
||||||
|
" HumanMessage(content='我日薪8块钱,请问在闰年的二月,我月薪多少')\n",
|
||||||
|
"])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"source": [
|
||||||
|
"## For ChatBaichuan with Streaming"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"chat = ChatBaichuan(\n",
|
||||||
|
" baichuan_api_key='YOUR_API_KEY',\n",
|
||||||
|
" baichuan_secret_key='YOUR_SECRET_KEY',\n",
|
||||||
|
" streaming=True\n",
|
||||||
|
")"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false,
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-10-17T15:14:25.870044Z",
|
||||||
|
"start_time": "2023-10-17T15:14:25.863381Z"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": "AIMessageChunk(content='首先,我们需要确定闰年的二月有多少天。闰年的二月有29天。\\n\\n然后,我们可以计算你的月薪:\\n\\n日薪 = 月薪 / (当月天数)\\n\\n所以,你的月薪 = 日薪 * 当月天数\\n\\n将数值代入公式:\\n\\n月薪 = 8元/天 * 29天 = 232元\\n\\n因此,你在闰年的二月的月薪是232元。')"
|
||||||
|
},
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"chat([\n",
|
||||||
|
" HumanMessage(content='我日薪8块钱,请问在闰年的二月,我月薪多少')\n",
|
||||||
|
"])"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false,
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-10-17T15:14:27.153546Z",
|
||||||
|
"start_time": "2023-10-17T15:14:25.868470Z"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.11.4"
|
||||||
|
},
|
||||||
|
"orig_nbformat": 4
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
@ -20,6 +20,7 @@ an interface where "chat messages" are the inputs and outputs.
|
|||||||
from langchain.chat_models.anthropic import ChatAnthropic
|
from langchain.chat_models.anthropic import ChatAnthropic
|
||||||
from langchain.chat_models.anyscale import ChatAnyscale
|
from langchain.chat_models.anyscale import ChatAnyscale
|
||||||
from langchain.chat_models.azure_openai import AzureChatOpenAI
|
from langchain.chat_models.azure_openai import AzureChatOpenAI
|
||||||
|
from langchain.chat_models.baichuan import ChatBaichuan
|
||||||
from langchain.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint
|
from langchain.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint
|
||||||
from langchain.chat_models.bedrock import BedrockChat
|
from langchain.chat_models.bedrock import BedrockChat
|
||||||
from langchain.chat_models.cohere import ChatCohere
|
from langchain.chat_models.cohere import ChatCohere
|
||||||
@ -65,4 +66,5 @@ __all__ = [
|
|||||||
"QianfanChatEndpoint",
|
"QianfanChatEndpoint",
|
||||||
"ChatFireworks",
|
"ChatFireworks",
|
||||||
"ChatYandexGPT",
|
"ChatYandexGPT",
|
||||||
|
"ChatBaichuan",
|
||||||
]
|
]
|
||||||
|
274
libs/langchain/langchain/chat_models/baichuan.py
Normal file
274
libs/langchain/langchain/chat_models/baichuan.py
Normal file
@ -0,0 +1,274 @@
|
|||||||
|
import hashlib
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import time
|
||||||
|
from typing import Any, Dict, Iterator, List, Mapping, Optional, Type
|
||||||
|
|
||||||
|
import requests
|
||||||
|
|
||||||
|
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||||
|
from langchain.chat_models.base import BaseChatModel, _generate_from_stream
|
||||||
|
from langchain.pydantic_v1 import Field, root_validator
|
||||||
|
from langchain.schema import (
|
||||||
|
AIMessage,
|
||||||
|
BaseMessage,
|
||||||
|
ChatGeneration,
|
||||||
|
ChatMessage,
|
||||||
|
ChatResult,
|
||||||
|
HumanMessage,
|
||||||
|
)
|
||||||
|
from langchain.schema.messages import (
|
||||||
|
AIMessageChunk,
|
||||||
|
BaseMessageChunk,
|
||||||
|
ChatMessageChunk,
|
||||||
|
HumanMessageChunk,
|
||||||
|
)
|
||||||
|
from langchain.schema.output import ChatGenerationChunk
|
||||||
|
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def convert_message_to_dict(message: BaseMessage) -> dict:
|
||||||
|
message_dict: Dict[str, Any]
|
||||||
|
if isinstance(message, ChatMessage):
|
||||||
|
message_dict = {"role": message.role, "content": message.content}
|
||||||
|
elif isinstance(message, HumanMessage):
|
||||||
|
message_dict = {"role": "user", "content": message.content}
|
||||||
|
elif isinstance(message, AIMessage):
|
||||||
|
message_dict = {"role": "assistant", "content": message.content}
|
||||||
|
else:
|
||||||
|
raise TypeError(f"Got unknown type {message}")
|
||||||
|
|
||||||
|
return message_dict
|
||||||
|
|
||||||
|
|
||||||
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
||||||
|
role = _dict["role"]
|
||||||
|
if role == "user":
|
||||||
|
return HumanMessage(content=_dict["content"])
|
||||||
|
elif role == "assistant":
|
||||||
|
return AIMessage(content=_dict.get("content", "") or "")
|
||||||
|
else:
|
||||||
|
return ChatMessage(content=_dict["content"], role=role)
|
||||||
|
|
||||||
|
|
||||||
|
def _convert_delta_to_message_chunk(
|
||||||
|
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
||||||
|
) -> BaseMessageChunk:
|
||||||
|
role = _dict.get("role")
|
||||||
|
content = _dict.get("content") or ""
|
||||||
|
|
||||||
|
if role == "user" or default_class == HumanMessageChunk:
|
||||||
|
return HumanMessageChunk(content=content)
|
||||||
|
elif role == "assistant" or default_class == AIMessageChunk:
|
||||||
|
return AIMessageChunk(content=content)
|
||||||
|
elif role or default_class == ChatMessageChunk:
|
||||||
|
return ChatMessageChunk(content=content, role=role)
|
||||||
|
else:
|
||||||
|
return default_class(content=content)
|
||||||
|
|
||||||
|
|
||||||
|
class ChatBaichuan(BaseChatModel):
|
||||||
|
"""Baichuan chat models API by Baichuan Intelligent Technology.
|
||||||
|
|
||||||
|
For more information, see https://platform.baichuan-ai.com/docs/api
|
||||||
|
"""
|
||||||
|
|
||||||
|
@property
|
||||||
|
def lc_secrets(self) -> Dict[str, str]:
|
||||||
|
return {
|
||||||
|
"baichuan_api_key": "BAICHUAN_API_KEY",
|
||||||
|
"baichuan_secret_key": "BAICHUAN_SECRET_KEY",
|
||||||
|
}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def lc_serializable(self) -> bool:
|
||||||
|
return True
|
||||||
|
|
||||||
|
baichuan_api_base: str = "https://api.baichuan-ai.com"
|
||||||
|
"""Baichuan custom endpoints"""
|
||||||
|
baichuan_api_key: Optional[str] = None
|
||||||
|
"""Baichuan API Key"""
|
||||||
|
baichuan_secret_key: Optional[str] = None
|
||||||
|
"""Baichuan Secret Key"""
|
||||||
|
streaming: Optional[bool] = False
|
||||||
|
"""streaming mode."""
|
||||||
|
request_timeout: Optional[int] = 60
|
||||||
|
"""request timeout for chat http requests"""
|
||||||
|
|
||||||
|
model = "Baichuan2-53B"
|
||||||
|
"""model name of Baichuan, default is `Baichuan2-53B`."""
|
||||||
|
temperature: float = 0.3
|
||||||
|
top_k: int = 5
|
||||||
|
top_p: float = 0.85
|
||||||
|
with_search_enhance: bool = False
|
||||||
|
"""Whether to use search enhance, default is False."""
|
||||||
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||||
|
|
||||||
|
class Config:
|
||||||
|
"""Configuration for this pydantic object."""
|
||||||
|
|
||||||
|
allow_population_by_field_name = True
|
||||||
|
|
||||||
|
@root_validator(pre=True)
|
||||||
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||||
|
"""Build extra kwargs from additional params that were passed in."""
|
||||||
|
all_required_field_names = get_pydantic_field_names(cls)
|
||||||
|
extra = values.get("model_kwargs", {})
|
||||||
|
for field_name in list(values):
|
||||||
|
if field_name in extra:
|
||||||
|
raise ValueError(f"Found {field_name} supplied twice.")
|
||||||
|
if field_name not in all_required_field_names:
|
||||||
|
logger.warning(
|
||||||
|
f"""WARNING! {field_name} is not default parameter.
|
||||||
|
{field_name} was transferred to model_kwargs.
|
||||||
|
Please confirm that {field_name} is what you intended."""
|
||||||
|
)
|
||||||
|
extra[field_name] = values.pop(field_name)
|
||||||
|
|
||||||
|
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
||||||
|
if invalid_model_kwargs:
|
||||||
|
raise ValueError(
|
||||||
|
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
||||||
|
f"Instead they were passed in as part of `model_kwargs` parameter."
|
||||||
|
)
|
||||||
|
|
||||||
|
values["model_kwargs"] = extra
|
||||||
|
return values
|
||||||
|
|
||||||
|
@root_validator()
|
||||||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||||||
|
values["baichuan_api_base"] = get_from_dict_or_env(
|
||||||
|
values,
|
||||||
|
"baichuan_api_base",
|
||||||
|
"BAICHUAN_API_BASE",
|
||||||
|
)
|
||||||
|
values["baichuan_api_key"] = get_from_dict_or_env(
|
||||||
|
values,
|
||||||
|
"baichuan_api_key",
|
||||||
|
"BAICHUAN_API_KEY",
|
||||||
|
)
|
||||||
|
values["baichuan_secret_key"] = get_from_dict_or_env(
|
||||||
|
values,
|
||||||
|
"baichuan_secret_key",
|
||||||
|
"BAICHUAN_SECRET_KEY",
|
||||||
|
)
|
||||||
|
|
||||||
|
return values
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _default_params(self) -> Dict[str, Any]:
|
||||||
|
"""Get the default parameters for calling Baichuan API."""
|
||||||
|
normal_params = {
|
||||||
|
"model": self.model,
|
||||||
|
"top_p": self.top_p,
|
||||||
|
"top_k": self.top_k,
|
||||||
|
"with_search_enhance": self.with_search_enhance,
|
||||||
|
}
|
||||||
|
|
||||||
|
return {**normal_params, **self.model_kwargs}
|
||||||
|
|
||||||
|
def _signature(self, data: Dict[str, Any], timestamp: int) -> str:
|
||||||
|
if self.baichuan_secret_key is None:
|
||||||
|
raise ValueError("Baichuan secret key is not set.")
|
||||||
|
|
||||||
|
input_str = self.baichuan_secret_key + json.dumps(data) + str(timestamp)
|
||||||
|
md5 = hashlib.md5()
|
||||||
|
md5.update(input_str.encode("utf-8"))
|
||||||
|
return md5.hexdigest()
|
||||||
|
|
||||||
|
def _generate(
|
||||||
|
self,
|
||||||
|
messages: List[BaseMessage],
|
||||||
|
stop: Optional[List[str]] = None,
|
||||||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> ChatResult:
|
||||||
|
if self.streaming:
|
||||||
|
stream_iter = self._stream(
|
||||||
|
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
||||||
|
)
|
||||||
|
return _generate_from_stream(stream_iter)
|
||||||
|
|
||||||
|
res = self._chat(messages, **kwargs)
|
||||||
|
|
||||||
|
response = res.json()
|
||||||
|
|
||||||
|
if response.get("code") != 0:
|
||||||
|
raise ValueError(f"Error from Baichuan api response: {response}")
|
||||||
|
|
||||||
|
return self._create_chat_result(response)
|
||||||
|
|
||||||
|
def _stream(
|
||||||
|
self,
|
||||||
|
messages: List[BaseMessage],
|
||||||
|
stop: Optional[List[str]] = None,
|
||||||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> Iterator[ChatGenerationChunk]:
|
||||||
|
res = self._chat(messages, **kwargs)
|
||||||
|
|
||||||
|
default_chunk_class = AIMessageChunk
|
||||||
|
for chunk in res.iter_lines():
|
||||||
|
response = json.loads(chunk)
|
||||||
|
if response.get("code") != 0:
|
||||||
|
raise ValueError(f"Error from Baichuan api response: {response}")
|
||||||
|
|
||||||
|
data = response.get("data")
|
||||||
|
for m in data.get("messages"):
|
||||||
|
chunk = _convert_delta_to_message_chunk(m, default_chunk_class)
|
||||||
|
default_chunk_class = chunk.__class__
|
||||||
|
yield ChatGenerationChunk(message=chunk)
|
||||||
|
if run_manager:
|
||||||
|
run_manager.on_llm_new_token(chunk.content)
|
||||||
|
|
||||||
|
def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response:
|
||||||
|
parameters = {**self._default_params, **kwargs}
|
||||||
|
|
||||||
|
model = parameters.pop("model")
|
||||||
|
headers = parameters.pop("headers", {})
|
||||||
|
|
||||||
|
payload = {
|
||||||
|
"model": model,
|
||||||
|
"messages": [convert_message_to_dict(m) for m in messages],
|
||||||
|
"parameters": parameters,
|
||||||
|
}
|
||||||
|
|
||||||
|
timestamp = int(time.time())
|
||||||
|
|
||||||
|
url = f"{self.baichuan_api_base}/v1"
|
||||||
|
if self.streaming:
|
||||||
|
url = f"{url}/stream"
|
||||||
|
url = f"{url}/chat"
|
||||||
|
|
||||||
|
res = requests.post(
|
||||||
|
url=url,
|
||||||
|
timeout=self.request_timeout,
|
||||||
|
headers={
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"Authorization": f"Bearer {self.baichuan_api_key}",
|
||||||
|
"X-BC-Timestamp": str(timestamp),
|
||||||
|
"X-BC-Signature": self._signature(payload, timestamp),
|
||||||
|
"X-BC-Sign-Algo": "MD5",
|
||||||
|
**headers,
|
||||||
|
},
|
||||||
|
json=payload,
|
||||||
|
stream=self.streaming,
|
||||||
|
)
|
||||||
|
return res
|
||||||
|
|
||||||
|
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
|
||||||
|
generations = []
|
||||||
|
for m in response["data"]["messages"]:
|
||||||
|
message = _convert_dict_to_message(m)
|
||||||
|
gen = ChatGeneration(message=message)
|
||||||
|
generations.append(gen)
|
||||||
|
|
||||||
|
token_usage = response["usage"]
|
||||||
|
llm_output = {"token_usage": token_usage, "model": self.model}
|
||||||
|
return ChatResult(generations=generations, llm_output=llm_output)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _llm_type(self) -> str:
|
||||||
|
return "baichuan-chat"
|
Loading…
Reference in New Issue
Block a user