experimental[patch]: refactor rl chain structure (#25398)

can't have a class and function with same name but different
capitalization in same file for api reference building
This commit is contained in:
Bagatur 2024-08-14 10:09:43 -07:00 committed by GitHub
parent 94c9cb7321
commit 414154fa59
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 380 additions and 202 deletions

View File

@ -19,9 +19,8 @@ from langchain_experimental.rl_chain.base import (
SelectionScorer,
ToSelectFrom,
VwPolicy,
embed,
stringify_embedding,
)
from langchain_experimental.rl_chain.helpers import embed, stringify_embedding
from langchain_experimental.rl_chain.pick_best_chain import (
PickBest,
PickBestEvent,

View File

@ -27,6 +27,7 @@ from langchain_core.prompts import (
)
from langchain_experimental.pydantic_v1 import BaseModel, root_validator
from langchain_experimental.rl_chain.helpers import _Embed
from langchain_experimental.rl_chain.metrics import (
MetricsTrackerAverage,
MetricsTrackerRollingWindow,
@ -74,17 +75,6 @@ def ToSelectFrom(anything: Any) -> _ToSelectFrom:
return _ToSelectFrom(anything)
class _Embed:
def __init__(self, value: Any, keep: bool = False):
self.value = value
self.keep = keep
def __str__(self) -> str:
return str(self.value)
__repr__ = __str__
def Embed(anything: Any, keep: bool = False) -> Any:
"""Wrap a value to indicate that it should be embedded."""
@ -110,12 +100,6 @@ def EmbedAndKeep(anything: Any) -> Any:
# helper functions
def stringify_embedding(embedding: List) -> str:
"""Convert an embedding to a string."""
return " ".join([f"{i}:{e}" for i, e in enumerate(embedding)])
def parse_lines(parser: "vw.TextFormatParser", input_str: str) -> List["vw.Example"]:
"""Parse the input string into a list of examples."""
@ -559,97 +543,3 @@ class RLChain(Chain, Generic[TEvent]):
@property
def _chain_type(self) -> str:
return "llm_personalizer_chain"
def is_stringtype_instance(item: Any) -> bool:
"""Check if an item is a string."""
return isinstance(item, str) or (
isinstance(item, _Embed) and isinstance(item.value, str)
)
def embed_string_type(
item: Union[str, _Embed], model: Any, namespace: Optional[str] = None
) -> Dict[str, Union[str, List[str]]]:
"""Embed a string or an _Embed object."""
keep_str = ""
if isinstance(item, _Embed):
encoded = stringify_embedding(model.encode(item.value))
if item.keep:
keep_str = item.value.replace(" ", "_") + " "
elif isinstance(item, str):
encoded = item.replace(" ", "_")
else:
raise ValueError(f"Unsupported type {type(item)} for embedding")
if namespace is None:
raise ValueError(
"The default namespace must be provided when embedding a string or _Embed object." # noqa: E501
)
return {namespace: keep_str + encoded}
def embed_dict_type(item: Dict, model: Any) -> Dict[str, Any]:
"""Embed a dictionary item."""
inner_dict: Dict = {}
for ns, embed_item in item.items():
if isinstance(embed_item, list):
inner_dict[ns] = []
for embed_list_item in embed_item:
embedded = embed_string_type(embed_list_item, model, ns)
inner_dict[ns].append(embedded[ns])
else:
inner_dict.update(embed_string_type(embed_item, model, ns))
return inner_dict
def embed_list_type(
item: list, model: Any, namespace: Optional[str] = None
) -> List[Dict[str, Union[str, List[str]]]]:
"""Embed a list item."""
ret_list: List = []
for embed_item in item:
if isinstance(embed_item, dict):
ret_list.append(embed_dict_type(embed_item, model))
elif isinstance(embed_item, list):
item_embedding = embed_list_type(embed_item, model, namespace)
# Get the first key from the first dictionary
first_key = next(iter(item_embedding[0]))
# Group the values under that key
grouping = {first_key: [item[first_key] for item in item_embedding]}
ret_list.append(grouping)
else:
ret_list.append(embed_string_type(embed_item, model, namespace))
return ret_list
def embed(
to_embed: Union[Union[str, _Embed], Dict, List[Union[str, _Embed]], List[Dict]],
model: Any,
namespace: Optional[str] = None,
) -> List[Dict[str, Union[str, List[str]]]]:
"""
Embed the actions or context using the SentenceTransformer model
(or a model that has an `encode` function).
Attributes:
to_embed: (Union[Union(str, _Embed(str)), Dict, List[Union(str, _Embed(str))], List[Dict]], required) The text to be embedded, either a string, a list of strings or a dictionary or a list of dictionaries.
namespace: (str, optional) The default namespace to use when dictionary or list of dictionaries not provided.
model: (Any, required) The model to use for embedding
Returns:
List[Dict[str, str]]: A list of dictionaries where each dictionary has the namespace as the key and the embedded string as the value
""" # noqa: E501
if (isinstance(to_embed, _Embed) and isinstance(to_embed.value, str)) or isinstance(
to_embed, str
):
return [embed_string_type(to_embed, model, namespace)]
elif isinstance(to_embed, dict):
return [embed_dict_type(to_embed, model)]
elif isinstance(to_embed, list):
return embed_list_type(to_embed, model, namespace)
else:
raise ValueError("Invalid input format for embedding")

View File

@ -0,0 +1,114 @@
from __future__ import annotations
from typing import Any, Dict, List, Optional, Union
class _Embed:
def __init__(self, value: Any, keep: bool = False):
self.value = value
self.keep = keep
def __str__(self) -> str:
return str(self.value)
__repr__ = __str__
def stringify_embedding(embedding: List) -> str:
"""Convert an embedding to a string."""
return " ".join([f"{i}:{e}" for i, e in enumerate(embedding)])
def is_stringtype_instance(item: Any) -> bool:
"""Check if an item is a string."""
return isinstance(item, str) or (
isinstance(item, _Embed) and isinstance(item.value, str)
)
def embed_string_type(
item: Union[str, _Embed], model: Any, namespace: Optional[str] = None
) -> Dict[str, Union[str, List[str]]]:
"""Embed a string or an _Embed object."""
keep_str = ""
if isinstance(item, _Embed):
encoded = stringify_embedding(model.encode(item.value))
if item.keep:
keep_str = item.value.replace(" ", "_") + " "
elif isinstance(item, str):
encoded = item.replace(" ", "_")
else:
raise ValueError(f"Unsupported type {type(item)} for embedding")
if namespace is None:
raise ValueError(
"The default namespace must be provided when embedding a string or _Embed object." # noqa: E501
)
return {namespace: keep_str + encoded}
def embed_dict_type(item: Dict, model: Any) -> Dict[str, Any]:
"""Embed a dictionary item."""
inner_dict: Dict = {}
for ns, embed_item in item.items():
if isinstance(embed_item, list):
inner_dict[ns] = []
for embed_list_item in embed_item:
embedded = embed_string_type(embed_list_item, model, ns)
inner_dict[ns].append(embedded[ns])
else:
inner_dict.update(embed_string_type(embed_item, model, ns))
return inner_dict
def embed_list_type(
item: list, model: Any, namespace: Optional[str] = None
) -> List[Dict[str, Union[str, List[str]]]]:
"""Embed a list item."""
ret_list: List = []
for embed_item in item:
if isinstance(embed_item, dict):
ret_list.append(embed_dict_type(embed_item, model))
elif isinstance(embed_item, list):
item_embedding = embed_list_type(embed_item, model, namespace)
# Get the first key from the first dictionary
first_key = next(iter(item_embedding[0]))
# Group the values under that key
grouping = {first_key: [item[first_key] for item in item_embedding]}
ret_list.append(grouping)
else:
ret_list.append(embed_string_type(embed_item, model, namespace))
return ret_list
def embed(
to_embed: Union[Union[str, _Embed], Dict, List[Union[str, _Embed]], List[Dict]],
model: Any,
namespace: Optional[str] = None,
) -> List[Dict[str, Union[str, List[str]]]]:
"""
Embed the actions or context using the SentenceTransformer model
(or a model that has an `encode` function).
Attributes:
to_embed: (Union[Union(str, _Embed(str)), Dict, List[Union(str, _Embed(str))], List[Dict]], required) The text to be embedded, either a string, a list of strings or a dictionary or a list of dictionaries.
namespace: (str, optional) The default namespace to use when dictionary or list of dictionaries not provided.
model: (Any, required) The model to use for embedding
Returns:
List[Dict[str, str]]: A list of dictionaries where each dictionary has the namespace as the key and the embedded string as the value
""" # noqa: E501
if (isinstance(to_embed, _Embed) and isinstance(to_embed.value, str)) or isinstance(
to_embed, str
):
return [embed_string_type(to_embed, model, namespace)]
elif isinstance(to_embed, dict):
return [embed_dict_type(to_embed, model)]
elif isinstance(to_embed, list):
return embed_list_type(to_embed, model, namespace)
else:
raise ValueError("Invalid input format for embedding")

View File

@ -9,6 +9,7 @@ from langchain_core.callbacks.manager import CallbackManagerForChainRun
from langchain_core.prompts import BasePromptTemplate
import langchain_experimental.rl_chain.base as base
from langchain_experimental.rl_chain.helpers import embed
logger = logging.getLogger(__name__)
@ -90,14 +91,14 @@ class PickBestFeatureEmbedder(base.Embedder[PickBestEvent]):
return None, None, None
def get_context_and_action_embeddings(self, event: PickBestEvent) -> tuple:
context_emb = base.embed(event.based_on, self.model) if event.based_on else None
context_emb = embed(event.based_on, self.model) if event.based_on else None
to_select_from_var_name, to_select_from = next(
iter(event.to_select_from.items()), (None, None)
)
action_embs = (
(
base.embed(to_select_from, self.model, to_select_from_var_name)
embed(to_select_from, self.model, to_select_from_var_name)
if event.to_select_from
else None
)

View File

@ -6,6 +6,7 @@ from langchain_core.prompts.prompt import PromptTemplate
from test_utils import MockEncoder, MockEncoderReturnsList
import langchain_experimental.rl_chain.base as rl_chain
import langchain_experimental.rl_chain.helpers
import langchain_experimental.rl_chain.pick_best_chain as pick_best_chain
encoded_keyword = "[encoded]"
@ -197,13 +198,21 @@ def test_everything_embedded() -> None:
str1 = "0"
str2 = "1"
str3 = "2"
encoded_str1 = rl_chain.stringify_embedding(list(encoded_keyword + str1))
encoded_str2 = rl_chain.stringify_embedding(list(encoded_keyword + str2))
encoded_str3 = rl_chain.stringify_embedding(list(encoded_keyword + str3))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str2)
)
encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str3)
)
ctx_str_1 = "context1"
encoded_ctx_str_1 = rl_chain.stringify_embedding(list(encoded_keyword + ctx_str_1))
encoded_ctx_str_1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + ctx_str_1)
)
expected = f"""shared |User {ctx_str_1 + " " + encoded_ctx_str_1} \n|action {str1 + " " + encoded_str1} \n|action {str2 + " " + encoded_str2} \n|action {str3 + " " + encoded_str3} """ # noqa
@ -314,10 +323,14 @@ def test_default_embeddings_mixed_w_explicit_user_embeddings() -> None:
str1 = "0"
str2 = "1"
encoded_str2 = rl_chain.stringify_embedding([1.0, 2.0])
encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
[1.0, 2.0]
)
ctx_str_1 = "context1"
ctx_str_2 = "context2"
encoded_ctx_str_1 = rl_chain.stringify_embedding([1.0, 2.0])
encoded_ctx_str_1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
[1.0, 2.0]
)
dot_prod = "dotprod 0:5.0 1:5.0" # dot prod of [1.0, 2.0] and [1.0, 2.0]
expected = f"""shared |User {encoded_ctx_str_1} |@ User={encoded_ctx_str_1} |User2 {ctx_str_2} |@ User2={ctx_str_2}\n|action {str1} |# action={str1} |{dot_prod}\n|action {encoded_str2} |# action={encoded_str2} |{dot_prod}""" # noqa

View File

@ -2,6 +2,7 @@ import pytest
from test_utils import MockEncoder
import langchain_experimental.rl_chain.base as rl_chain
import langchain_experimental.rl_chain.helpers
import langchain_experimental.rl_chain.pick_best_chain as pick_best_chain
encoded_keyword = "[encoded]"
@ -92,12 +93,20 @@ def test_pickbest_textembedder_w_full_label_w_emb() -> None:
str1 = "0"
str2 = "1"
str3 = "2"
encoded_str1 = rl_chain.stringify_embedding(list(encoded_keyword + str1))
encoded_str2 = rl_chain.stringify_embedding(list(encoded_keyword + str2))
encoded_str3 = rl_chain.stringify_embedding(list(encoded_keyword + str3))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str2)
)
encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str3)
)
ctx_str_1 = "context1"
encoded_ctx_str_1 = rl_chain.stringify_embedding(list(encoded_keyword + ctx_str_1))
encoded_ctx_str_1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + ctx_str_1)
)
named_actions = {"action1": rl_chain.Embed([str1, str2, str3])}
context = {"context": rl_chain.Embed(ctx_str_1)}
@ -118,12 +127,20 @@ def test_pickbest_textembedder_w_full_label_w_embed_and_keep() -> None:
str1 = "0"
str2 = "1"
str3 = "2"
encoded_str1 = rl_chain.stringify_embedding(list(encoded_keyword + str1))
encoded_str2 = rl_chain.stringify_embedding(list(encoded_keyword + str2))
encoded_str3 = rl_chain.stringify_embedding(list(encoded_keyword + str3))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str2)
)
encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str3)
)
ctx_str_1 = "context1"
encoded_ctx_str_1 = rl_chain.stringify_embedding(list(encoded_keyword + ctx_str_1))
encoded_ctx_str_1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + ctx_str_1)
)
named_actions = {"action1": rl_chain.EmbedAndKeep([str1, str2, str3])}
context = {"context": rl_chain.EmbedAndKeep(ctx_str_1)}
@ -192,14 +209,24 @@ def test_pickbest_textembedder_more_namespaces_w_full_label_w_full_emb() -> None
str1 = "0"
str2 = "1"
str3 = "2"
encoded_str1 = rl_chain.stringify_embedding(list(encoded_keyword + str1))
encoded_str2 = rl_chain.stringify_embedding(list(encoded_keyword + str2))
encoded_str3 = rl_chain.stringify_embedding(list(encoded_keyword + str3))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str2)
)
encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str3)
)
ctx_str_1 = "context1"
ctx_str_2 = "context2"
encoded_ctx_str_1 = rl_chain.stringify_embedding(list(encoded_keyword + ctx_str_1))
encoded_ctx_str_2 = rl_chain.stringify_embedding(list(encoded_keyword + ctx_str_2))
encoded_ctx_str_1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + ctx_str_1)
)
encoded_ctx_str_2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + ctx_str_2)
)
named_actions = {"action1": rl_chain.Embed([{"a": str1, "b": str1}, str2, str3])}
context = {
@ -227,14 +254,24 @@ def test_pickbest_textembedder_more_namespaces_w_full_label_w_full_embed_and_kee
str1 = "0"
str2 = "1"
str3 = "2"
encoded_str1 = rl_chain.stringify_embedding(list(encoded_keyword + str1))
encoded_str2 = rl_chain.stringify_embedding(list(encoded_keyword + str2))
encoded_str3 = rl_chain.stringify_embedding(list(encoded_keyword + str3))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str2)
)
encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str3)
)
ctx_str_1 = "context1"
ctx_str_2 = "context2"
encoded_ctx_str_1 = rl_chain.stringify_embedding(list(encoded_keyword + ctx_str_1))
encoded_ctx_str_2 = rl_chain.stringify_embedding(list(encoded_keyword + ctx_str_2))
encoded_ctx_str_1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + ctx_str_1)
)
encoded_ctx_str_2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + ctx_str_2)
)
named_actions = {
"action1": rl_chain.EmbedAndKeep([{"a": str1, "b": str1}, str2, str3])
@ -262,12 +299,18 @@ def test_pickbest_textembedder_more_namespaces_w_full_label_w_partial_emb() -> N
str1 = "0"
str2 = "1"
str3 = "2"
encoded_str1 = rl_chain.stringify_embedding(list(encoded_keyword + str1))
encoded_str3 = rl_chain.stringify_embedding(list(encoded_keyword + str3))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str3)
)
ctx_str_1 = "context1"
ctx_str_2 = "context2"
encoded_ctx_str_2 = rl_chain.stringify_embedding(list(encoded_keyword + ctx_str_2))
encoded_ctx_str_2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + ctx_str_2)
)
named_actions = {
"action1": [
@ -296,12 +339,18 @@ def test_pickbest_textembedder_more_namespaces_w_full_label_w_partial_emakeep()
str1 = "0"
str2 = "1"
str3 = "2"
encoded_str1 = rl_chain.stringify_embedding(list(encoded_keyword + str1))
encoded_str3 = rl_chain.stringify_embedding(list(encoded_keyword + str3))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str3)
)
ctx_str_1 = "context1"
ctx_str_2 = "context2"
encoded_ctx_str_2 = rl_chain.stringify_embedding(list(encoded_keyword + ctx_str_2))
encoded_ctx_str_2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + ctx_str_2)
)
named_actions = {
"action1": [
@ -331,11 +380,15 @@ def test_raw_features_underscored() -> None:
)
str1 = "this is a long string"
str1_underscored = str1.replace(" ", "_")
encoded_str1 = rl_chain.stringify_embedding(list(encoded_keyword + str1))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
ctx_str = "this is a long context"
ctx_str_underscored = ctx_str.replace(" ", "_")
encoded_ctx_str = rl_chain.stringify_embedding(list(encoded_keyword + ctx_str))
encoded_ctx_str = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + ctx_str)
)
# No embeddings
named_actions = {"action": [str1]}

View File

@ -4,6 +4,7 @@ import pytest
from test_utils import MockEncoder
import langchain_experimental.rl_chain.base as base
import langchain_experimental.rl_chain.helpers
encoded_keyword = "[encoded]"
@ -11,18 +12,32 @@ encoded_keyword = "[encoded]"
@pytest.mark.requires("vowpal_wabbit_next")
def test_simple_context_str_no_emb() -> None:
expected = [{"a_namespace": "test"}]
assert base.embed("test", MockEncoder(), "a_namespace") == expected
assert (
langchain_experimental.rl_chain.helpers.embed(
"test", MockEncoder(), "a_namespace"
)
== expected
)
@pytest.mark.requires("vowpal_wabbit_next")
def test_simple_context_str_w_emb() -> None:
str1 = "test"
encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
expected = [{"a_namespace": encoded_str1}]
assert base.embed(base.Embed(str1), MockEncoder(), "a_namespace") == expected
assert (
langchain_experimental.rl_chain.helpers.embed(
base.Embed(str1), MockEncoder(), "a_namespace"
)
== expected
)
expected_embed_and_keep = [{"a_namespace": str1 + " " + encoded_str1}]
assert (
base.embed(base.EmbedAndKeep(str1), MockEncoder(), "a_namespace")
langchain_experimental.rl_chain.helpers.embed(
base.EmbedAndKeep(str1), MockEncoder(), "a_namespace"
)
== expected_embed_and_keep
)
@ -31,16 +46,22 @@ def test_simple_context_str_w_emb() -> None:
def test_simple_context_str_w_nested_emb() -> None:
# nested embeddings, innermost wins
str1 = "test"
encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
expected = [{"a_namespace": encoded_str1}]
assert (
base.embed(base.EmbedAndKeep(base.Embed(str1)), MockEncoder(), "a_namespace")
langchain_experimental.rl_chain.helpers.embed(
base.EmbedAndKeep(base.Embed(str1)), MockEncoder(), "a_namespace"
)
== expected
)
expected2 = [{"a_namespace": str1 + " " + encoded_str1}]
assert (
base.embed(base.Embed(base.EmbedAndKeep(str1)), MockEncoder(), "a_namespace")
langchain_experimental.rl_chain.helpers.embed(
base.Embed(base.EmbedAndKeep(str1)), MockEncoder(), "a_namespace"
)
== expected2
)
@ -48,18 +69,32 @@ def test_simple_context_str_w_nested_emb() -> None:
@pytest.mark.requires("vowpal_wabbit_next")
def test_context_w_namespace_no_emb() -> None:
expected = [{"test_namespace": "test"}]
assert base.embed({"test_namespace": "test"}, MockEncoder()) == expected
assert (
langchain_experimental.rl_chain.helpers.embed(
{"test_namespace": "test"}, MockEncoder()
)
== expected
)
@pytest.mark.requires("vowpal_wabbit_next")
def test_context_w_namespace_w_emb() -> None:
str1 = "test"
encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
expected = [{"test_namespace": encoded_str1}]
assert base.embed({"test_namespace": base.Embed(str1)}, MockEncoder()) == expected
assert (
langchain_experimental.rl_chain.helpers.embed(
{"test_namespace": base.Embed(str1)}, MockEncoder()
)
== expected
)
expected_embed_and_keep = [{"test_namespace": str1 + " " + encoded_str1}]
assert (
base.embed({"test_namespace": base.EmbedAndKeep(str1)}, MockEncoder())
langchain_experimental.rl_chain.helpers.embed(
{"test_namespace": base.EmbedAndKeep(str1)}, MockEncoder()
)
== expected_embed_and_keep
)
@ -67,12 +102,21 @@ def test_context_w_namespace_w_emb() -> None:
@pytest.mark.requires("vowpal_wabbit_next")
def test_context_w_namespace_w_emb2() -> None:
str1 = "test"
encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
expected = [{"test_namespace": encoded_str1}]
assert base.embed(base.Embed({"test_namespace": str1}), MockEncoder()) == expected
assert (
langchain_experimental.rl_chain.helpers.embed(
base.Embed({"test_namespace": str1}), MockEncoder()
)
== expected
)
expected_embed_and_keep = [{"test_namespace": str1 + " " + encoded_str1}]
assert (
base.embed(base.EmbedAndKeep({"test_namespace": str1}), MockEncoder())
langchain_experimental.rl_chain.helpers.embed(
base.EmbedAndKeep({"test_namespace": str1}), MockEncoder()
)
== expected_embed_and_keep
)
@ -81,10 +125,12 @@ def test_context_w_namespace_w_emb2() -> None:
def test_context_w_namespace_w_some_emb() -> None:
str1 = "test1"
str2 = "test2"
encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2))
encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str2)
)
expected = [{"test_namespace": str1, "test_namespace2": encoded_str2}]
assert (
base.embed(
langchain_experimental.rl_chain.helpers.embed(
{"test_namespace": str1, "test_namespace2": base.Embed(str2)}, MockEncoder()
)
== expected
@ -96,7 +142,7 @@ def test_context_w_namespace_w_some_emb() -> None:
}
]
assert (
base.embed(
langchain_experimental.rl_chain.helpers.embed(
{"test_namespace": str1, "test_namespace2": base.EmbedAndKeep(str2)},
MockEncoder(),
)
@ -110,8 +156,17 @@ def test_simple_action_strlist_no_emb() -> None:
str2 = "test2"
str3 = "test3"
expected = [{"a_namespace": str1}, {"a_namespace": str2}, {"a_namespace": str3}]
to_embed: List[Union[str, base._Embed]] = [str1, str2, str3]
assert base.embed(to_embed, MockEncoder(), "a_namespace") == expected
to_embed: List[Union[str, langchain_experimental.rl_chain.helpers._Embed]] = [
str1,
str2,
str3,
]
assert (
langchain_experimental.rl_chain.helpers.embed(
to_embed, MockEncoder(), "a_namespace"
)
== expected
)
@pytest.mark.requires("vowpal_wabbit_next")
@ -119,16 +174,24 @@ def test_simple_action_strlist_w_emb() -> None:
str1 = "test1"
str2 = "test2"
str3 = "test3"
encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1))
encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2))
encoded_str3 = base.stringify_embedding(list(encoded_keyword + str3))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str2)
)
encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str3)
)
expected = [
{"a_namespace": encoded_str1},
{"a_namespace": encoded_str2},
{"a_namespace": encoded_str3},
]
assert (
base.embed(base.Embed([str1, str2, str3]), MockEncoder(), "a_namespace")
langchain_experimental.rl_chain.helpers.embed(
base.Embed([str1, str2, str3]), MockEncoder(), "a_namespace"
)
== expected
)
expected_embed_and_keep = [
@ -137,7 +200,9 @@ def test_simple_action_strlist_w_emb() -> None:
{"a_namespace": str3 + " " + encoded_str3},
]
assert (
base.embed(base.EmbedAndKeep([str1, str2, str3]), MockEncoder(), "a_namespace")
langchain_experimental.rl_chain.helpers.embed(
base.EmbedAndKeep([str1, str2, str3]), MockEncoder(), "a_namespace"
)
== expected_embed_and_keep
)
@ -147,15 +212,19 @@ def test_simple_action_strlist_w_some_emb() -> None:
str1 = "test1"
str2 = "test2"
str3 = "test3"
encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2))
encoded_str3 = base.stringify_embedding(list(encoded_keyword + str3))
encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str2)
)
encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str3)
)
expected = [
{"a_namespace": str1},
{"a_namespace": encoded_str2},
{"a_namespace": encoded_str3},
]
assert (
base.embed(
langchain_experimental.rl_chain.helpers.embed(
[str1, base.Embed(str2), base.Embed(str3)], MockEncoder(), "a_namespace"
)
== expected
@ -166,7 +235,7 @@ def test_simple_action_strlist_w_some_emb() -> None:
{"a_namespace": str3 + " " + encoded_str3},
]
assert (
base.embed(
langchain_experimental.rl_chain.helpers.embed(
[str1, base.EmbedAndKeep(str2), base.EmbedAndKeep(str3)],
MockEncoder(),
"a_namespace",
@ -186,7 +255,7 @@ def test_action_w_namespace_no_emb() -> None:
{"test_namespace": str3},
]
assert (
base.embed(
langchain_experimental.rl_chain.helpers.embed(
[
{"test_namespace": str1},
{"test_namespace": str2},
@ -203,16 +272,22 @@ def test_action_w_namespace_w_emb() -> None:
str1 = "test1"
str2 = "test2"
str3 = "test3"
encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1))
encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2))
encoded_str3 = base.stringify_embedding(list(encoded_keyword + str3))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str2)
)
encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str3)
)
expected = [
{"test_namespace": encoded_str1},
{"test_namespace": encoded_str2},
{"test_namespace": encoded_str3},
]
assert (
base.embed(
langchain_experimental.rl_chain.helpers.embed(
[
{"test_namespace": base.Embed(str1)},
{"test_namespace": base.Embed(str2)},
@ -228,7 +303,7 @@ def test_action_w_namespace_w_emb() -> None:
{"test_namespace": str3 + " " + encoded_str3},
]
assert (
base.embed(
langchain_experimental.rl_chain.helpers.embed(
[
{"test_namespace": base.EmbedAndKeep(str1)},
{"test_namespace": base.EmbedAndKeep(str2)},
@ -245,16 +320,22 @@ def test_action_w_namespace_w_emb2() -> None:
str1 = "test1"
str2 = "test2"
str3 = "test3"
encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1))
encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2))
encoded_str3 = base.stringify_embedding(list(encoded_keyword + str3))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str2)
)
encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str3)
)
expected = [
{"test_namespace1": encoded_str1},
{"test_namespace2": encoded_str2},
{"test_namespace3": encoded_str3},
]
assert (
base.embed(
langchain_experimental.rl_chain.helpers.embed(
base.Embed(
[
{"test_namespace1": str1},
@ -272,7 +353,7 @@ def test_action_w_namespace_w_emb2() -> None:
{"test_namespace3": str3 + " " + encoded_str3},
]
assert (
base.embed(
langchain_experimental.rl_chain.helpers.embed(
base.EmbedAndKeep(
[
{"test_namespace1": str1},
@ -291,15 +372,19 @@ def test_action_w_namespace_w_some_emb() -> None:
str1 = "test1"
str2 = "test2"
str3 = "test3"
encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2))
encoded_str3 = base.stringify_embedding(list(encoded_keyword + str3))
encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str2)
)
encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str3)
)
expected = [
{"test_namespace": str1},
{"test_namespace": encoded_str2},
{"test_namespace": encoded_str3},
]
assert (
base.embed(
langchain_experimental.rl_chain.helpers.embed(
[
{"test_namespace": str1},
{"test_namespace": base.Embed(str2)},
@ -315,7 +400,7 @@ def test_action_w_namespace_w_some_emb() -> None:
{"test_namespace": str3 + " " + encoded_str3},
]
assert (
base.embed(
langchain_experimental.rl_chain.helpers.embed(
[
{"test_namespace": str1},
{"test_namespace": base.EmbedAndKeep(str2)},
@ -332,16 +417,22 @@ def test_action_w_namespace_w_emb_w_more_than_one_item_in_first_dict() -> None:
str1 = "test1"
str2 = "test2"
str3 = "test3"
encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1))
encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2))
encoded_str3 = base.stringify_embedding(list(encoded_keyword + str3))
encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str1)
)
encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str2)
)
encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str3)
)
expected = [
{"test_namespace": encoded_str1, "test_namespace2": str1},
{"test_namespace": encoded_str2, "test_namespace2": str2},
{"test_namespace": encoded_str3, "test_namespace2": str3},
]
assert (
base.embed(
langchain_experimental.rl_chain.helpers.embed(
[
{"test_namespace": base.Embed(str1), "test_namespace2": str1},
{"test_namespace": base.Embed(str2), "test_namespace2": str2},
@ -366,7 +457,7 @@ def test_action_w_namespace_w_emb_w_more_than_one_item_in_first_dict() -> None:
},
]
assert (
base.embed(
langchain_experimental.rl_chain.helpers.embed(
[
{"test_namespace": base.EmbedAndKeep(str1), "test_namespace2": str1},
{"test_namespace": base.EmbedAndKeep(str2), "test_namespace2": str2},
@ -383,17 +474,26 @@ def test_one_namespace_w_list_of_features_no_emb() -> None:
str1 = "test1"
str2 = "test2"
expected = [{"test_namespace": [str1, str2]}]
assert base.embed({"test_namespace": [str1, str2]}, MockEncoder()) == expected
assert (
langchain_experimental.rl_chain.helpers.embed(
{"test_namespace": [str1, str2]}, MockEncoder()
)
== expected
)
@pytest.mark.requires("vowpal_wabbit_next")
def test_one_namespace_w_list_of_features_w_some_emb() -> None:
str1 = "test1"
str2 = "test2"
encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2))
encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding(
list(encoded_keyword + str2)
)
expected = [{"test_namespace": [str1, encoded_str2]}]
assert (
base.embed({"test_namespace": [str1, base.Embed(str2)]}, MockEncoder())
langchain_experimental.rl_chain.helpers.embed(
{"test_namespace": [str1, base.Embed(str2)]}, MockEncoder()
)
== expected
)
@ -401,22 +501,30 @@ def test_one_namespace_w_list_of_features_w_some_emb() -> None:
@pytest.mark.requires("vowpal_wabbit_next")
def test_nested_list_features_throws() -> None:
with pytest.raises(ValueError):
base.embed({"test_namespace": [[1, 2], [3, 4]]}, MockEncoder())
langchain_experimental.rl_chain.helpers.embed(
{"test_namespace": [[1, 2], [3, 4]]}, MockEncoder()
)
@pytest.mark.requires("vowpal_wabbit_next")
def test_dict_in_list_throws() -> None:
with pytest.raises(ValueError):
base.embed({"test_namespace": [{"a": 1}, {"b": 2}]}, MockEncoder())
langchain_experimental.rl_chain.helpers.embed(
{"test_namespace": [{"a": 1}, {"b": 2}]}, MockEncoder()
)
@pytest.mark.requires("vowpal_wabbit_next")
def test_nested_dict_throws() -> None:
with pytest.raises(ValueError):
base.embed({"test_namespace": {"a": {"b": 1}}}, MockEncoder())
langchain_experimental.rl_chain.helpers.embed(
{"test_namespace": {"a": {"b": 1}}}, MockEncoder()
)
@pytest.mark.requires("vowpal_wabbit_next")
def test_list_of_tuples_throws() -> None:
with pytest.raises(ValueError):
base.embed({"test_namespace": [("a", 1), ("b", 2)]}, MockEncoder())
langchain_experimental.rl_chain.helpers.embed(
{"test_namespace": [("a", 1), ("b", 2)]}, MockEncoder()
)