mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-19 05:13:46 +00:00
Community: LlamaCppEmbeddings embed_documents
and embed_query
(#28827)
- **Description:** `embed_documents` and `embed_query` was throwing off the error as stated in the issue. The issue was that `Llama` client is returning the embeddings in a nested list which is not being accounted for in the current implementation and therefore the stated error is being raised. - **Issue:** #28813 --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
This commit is contained in:
parent
32917a0b98
commit
41b6a86bbe
@ -20,7 +20,7 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
|
||||
"""
|
||||
|
||||
client: Any = None #: :meta private:
|
||||
model_path: str
|
||||
model_path: str = Field(default="")
|
||||
|
||||
n_ctx: int = Field(512, alias="n_ctx")
|
||||
"""Token context window."""
|
||||
@ -88,6 +88,7 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
|
||||
if self.n_gpu_layers is not None:
|
||||
model_params["n_gpu_layers"] = self.n_gpu_layers
|
||||
|
||||
if not self.client:
|
||||
try:
|
||||
from llama_cpp import Llama
|
||||
|
||||
@ -116,7 +117,17 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
embeddings = self.client.create_embedding(texts)
|
||||
return [list(map(float, e["embedding"])) for e in embeddings["data"]]
|
||||
final_embeddings = []
|
||||
for e in embeddings["data"]:
|
||||
try:
|
||||
if isinstance(e["embedding"][0], list):
|
||||
for data in e["embedding"]:
|
||||
final_embeddings.append(list(map(float, data)))
|
||||
else:
|
||||
final_embeddings.append(list(map(float, e["embedding"])))
|
||||
except (IndexError, TypeError):
|
||||
final_embeddings.append(list(map(float, e["embedding"])))
|
||||
return final_embeddings
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Embed a query using the Llama model.
|
||||
@ -128,4 +139,7 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
|
||||
Embeddings for the text.
|
||||
"""
|
||||
embedding = self.client.embed(text)
|
||||
if not isinstance(embedding, list):
|
||||
return list(map(float, embedding))
|
||||
else:
|
||||
return list(map(float, embedding[0]))
|
||||
|
40
libs/community/tests/unit_tests/embeddings/test_llamacpp.py
Normal file
40
libs/community/tests/unit_tests/embeddings/test_llamacpp.py
Normal file
@ -0,0 +1,40 @@
|
||||
from typing import Generator
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain_community.embeddings.llamacpp import LlamaCppEmbeddings
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_llama_client() -> Generator[MagicMock, None, None]:
|
||||
with patch(
|
||||
"langchain_community.embeddings.llamacpp.LlamaCppEmbeddings"
|
||||
) as MockLlama:
|
||||
mock_client = MagicMock()
|
||||
MockLlama.return_value = mock_client
|
||||
yield mock_client
|
||||
|
||||
|
||||
def test_initialization(mock_llama_client: MagicMock) -> None:
|
||||
embeddings = LlamaCppEmbeddings(client=mock_llama_client) # type: ignore[call-arg]
|
||||
assert embeddings.client is not None
|
||||
|
||||
|
||||
def test_embed_documents(mock_llama_client: MagicMock) -> None:
|
||||
mock_llama_client.create_embedding.return_value = {
|
||||
"data": [{"embedding": [[0.1, 0.2, 0.3]]}, {"embedding": [[0.4, 0.5, 0.6]]}]
|
||||
}
|
||||
embeddings = LlamaCppEmbeddings(client=mock_llama_client) # type: ignore[call-arg]
|
||||
texts = ["Hello world", "Test document"]
|
||||
result = embeddings.embed_documents(texts)
|
||||
expected = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_embed_query(mock_llama_client: MagicMock) -> None:
|
||||
mock_llama_client.embed.return_value = [[0.1, 0.2, 0.3]]
|
||||
embeddings = LlamaCppEmbeddings(client=mock_llama_client) # type: ignore[call-arg]
|
||||
result = embeddings.embed_query("Sample query")
|
||||
expected = [0.1, 0.2, 0.3]
|
||||
assert result == expected
|
Loading…
Reference in New Issue
Block a user