mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-22 19:09:57 +00:00
Community: LlamaCppEmbeddings embed_documents
and embed_query
(#28827)
- **Description:** `embed_documents` and `embed_query` was throwing off the error as stated in the issue. The issue was that `Llama` client is returning the embeddings in a nested list which is not being accounted for in the current implementation and therefore the stated error is being raised. - **Issue:** #28813 --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
This commit is contained in:
committed by
GitHub
parent
32917a0b98
commit
41b6a86bbe
@@ -20,7 +20,7 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
|
||||
"""
|
||||
|
||||
client: Any = None #: :meta private:
|
||||
model_path: str
|
||||
model_path: str = Field(default="")
|
||||
|
||||
n_ctx: int = Field(512, alias="n_ctx")
|
||||
"""Token context window."""
|
||||
@@ -88,21 +88,22 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
|
||||
if self.n_gpu_layers is not None:
|
||||
model_params["n_gpu_layers"] = self.n_gpu_layers
|
||||
|
||||
try:
|
||||
from llama_cpp import Llama
|
||||
if not self.client:
|
||||
try:
|
||||
from llama_cpp import Llama
|
||||
|
||||
self.client = Llama(model_path, embedding=True, **model_params)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import llama-cpp-python library. "
|
||||
"Please install the llama-cpp-python library to "
|
||||
"use this embedding model: pip install llama-cpp-python"
|
||||
)
|
||||
except Exception as e:
|
||||
raise ValueError(
|
||||
f"Could not load Llama model from path: {model_path}. "
|
||||
f"Received error {e}"
|
||||
)
|
||||
self.client = Llama(model_path, embedding=True, **model_params)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import llama-cpp-python library. "
|
||||
"Please install the llama-cpp-python library to "
|
||||
"use this embedding model: pip install llama-cpp-python"
|
||||
)
|
||||
except Exception as e:
|
||||
raise ValueError(
|
||||
f"Could not load Llama model from path: {model_path}. "
|
||||
f"Received error {e}"
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
@@ -116,7 +117,17 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
embeddings = self.client.create_embedding(texts)
|
||||
return [list(map(float, e["embedding"])) for e in embeddings["data"]]
|
||||
final_embeddings = []
|
||||
for e in embeddings["data"]:
|
||||
try:
|
||||
if isinstance(e["embedding"][0], list):
|
||||
for data in e["embedding"]:
|
||||
final_embeddings.append(list(map(float, data)))
|
||||
else:
|
||||
final_embeddings.append(list(map(float, e["embedding"])))
|
||||
except (IndexError, TypeError):
|
||||
final_embeddings.append(list(map(float, e["embedding"])))
|
||||
return final_embeddings
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Embed a query using the Llama model.
|
||||
@@ -128,4 +139,7 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
|
||||
Embeddings for the text.
|
||||
"""
|
||||
embedding = self.client.embed(text)
|
||||
return list(map(float, embedding))
|
||||
if not isinstance(embedding, list):
|
||||
return list(map(float, embedding))
|
||||
else:
|
||||
return list(map(float, embedding[0]))
|
||||
|
Reference in New Issue
Block a user