Community: LlamaCppEmbeddings embed_documents and embed_query (#28827)

- **Description:** `embed_documents` and `embed_query` was throwing off
the error as stated in the issue. The issue was that `Llama` client is
returning the embeddings in a nested list which is not being accounted
for in the current implementation and therefore the stated error is
being raised.
- **Issue:** #28813

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
This commit is contained in:
Mohammad Mohtashim
2024-12-23 19:50:22 +05:00
committed by GitHub
parent 32917a0b98
commit 41b6a86bbe
2 changed files with 71 additions and 17 deletions

View File

@@ -20,7 +20,7 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
"""
client: Any = None #: :meta private:
model_path: str
model_path: str = Field(default="")
n_ctx: int = Field(512, alias="n_ctx")
"""Token context window."""
@@ -88,21 +88,22 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
if self.n_gpu_layers is not None:
model_params["n_gpu_layers"] = self.n_gpu_layers
try:
from llama_cpp import Llama
if not self.client:
try:
from llama_cpp import Llama
self.client = Llama(model_path, embedding=True, **model_params)
except ImportError:
raise ImportError(
"Could not import llama-cpp-python library. "
"Please install the llama-cpp-python library to "
"use this embedding model: pip install llama-cpp-python"
)
except Exception as e:
raise ValueError(
f"Could not load Llama model from path: {model_path}. "
f"Received error {e}"
)
self.client = Llama(model_path, embedding=True, **model_params)
except ImportError:
raise ImportError(
"Could not import llama-cpp-python library. "
"Please install the llama-cpp-python library to "
"use this embedding model: pip install llama-cpp-python"
)
except Exception as e:
raise ValueError(
f"Could not load Llama model from path: {model_path}. "
f"Received error {e}"
)
return self
@@ -116,7 +117,17 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
List of embeddings, one for each text.
"""
embeddings = self.client.create_embedding(texts)
return [list(map(float, e["embedding"])) for e in embeddings["data"]]
final_embeddings = []
for e in embeddings["data"]:
try:
if isinstance(e["embedding"][0], list):
for data in e["embedding"]:
final_embeddings.append(list(map(float, data)))
else:
final_embeddings.append(list(map(float, e["embedding"])))
except (IndexError, TypeError):
final_embeddings.append(list(map(float, e["embedding"])))
return final_embeddings
def embed_query(self, text: str) -> List[float]:
"""Embed a query using the Llama model.
@@ -128,4 +139,7 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
Embeddings for the text.
"""
embedding = self.client.embed(text)
return list(map(float, embedding))
if not isinstance(embedding, list):
return list(map(float, embedding))
else:
return list(map(float, embedding[0]))