mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-04 04:28:58 +00:00
Redis langserve template (#12443)
Add Redis langserve template! Eventually will add semantic caching to this too. But I was struggling to get that to work for some reason with the LCEL implementation here. - **Description:** Introduces the Redis LangServe template. A simple RAG based app built on top of Redis that allows you to chat with company's public financial data (Edgar 10k filings) - **Issue:** None - **Dependencies:** The template contains the poetry project requirements to run this template - **Tag maintainer:** @baskaryan @Spartee - **Twitter handle:** @tchutch94 **Note**: this requires the commit here that deletes the `_aget_relevant_documents()` method from the Redis retriever class that wasn't implemented. That was breaking the langserve app. --------- Co-authored-by: Sam Partee <sam.partee@redis.com>
This commit is contained in:
0
templates/rag-redis/rag_redis/__init__.py
Normal file
0
templates/rag-redis/rag_redis/__init__.py
Normal file
68
templates/rag-redis/rag_redis/chain.py
Normal file
68
templates/rag-redis/rag_redis/chain.py
Normal file
@@ -0,0 +1,68 @@
|
||||
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||||
from langchain.vectorstores import Redis
|
||||
|
||||
from rag_redis.config import (
|
||||
EMBED_MODEL,
|
||||
INDEX_NAME,
|
||||
INDEX_SCHEMA,
|
||||
REDIS_URL,
|
||||
)
|
||||
|
||||
|
||||
# Make this look better in the docs.
|
||||
class Question(BaseModel):
|
||||
__root__: str
|
||||
|
||||
|
||||
# Init Embeddings
|
||||
embedder = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
||||
|
||||
# Connect to pre-loaded vectorstore
|
||||
# run the ingest.py script to populate this
|
||||
vectorstore = Redis.from_existing_index(
|
||||
embedding=embedder,
|
||||
index_name=INDEX_NAME,
|
||||
schema=INDEX_SCHEMA,
|
||||
redis_url=REDIS_URL
|
||||
)
|
||||
# TODO allow user to change parameters
|
||||
retriever = vectorstore.as_retriever(search_type="mmr")
|
||||
|
||||
|
||||
# Define our prompt
|
||||
template = """
|
||||
Use the following pieces of context from Nike's financial 10k filings
|
||||
dataset to answer the question. Do not make up an answer if there is no
|
||||
context provided to help answer it. Include the 'source' and 'start_index'
|
||||
from the metadata included in the context you used to answer the question
|
||||
|
||||
Context:
|
||||
---------
|
||||
{context}
|
||||
|
||||
---------
|
||||
Question: {question}
|
||||
---------
|
||||
|
||||
Answer:
|
||||
"""
|
||||
|
||||
|
||||
prompt = ChatPromptTemplate.from_template(template)
|
||||
|
||||
|
||||
# RAG Chain
|
||||
model = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
|
||||
chain = (
|
||||
RunnableParallel({"context": retriever,
|
||||
"question": RunnablePassthrough()})
|
||||
| prompt
|
||||
| model
|
||||
| StrOutputParser()
|
||||
).with_types(input_type=Question)
|
76
templates/rag-redis/rag_redis/config.py
Normal file
76
templates/rag-redis/rag_redis/config.py
Normal file
@@ -0,0 +1,76 @@
|
||||
import os
|
||||
|
||||
|
||||
def get_boolean_env_var(var_name, default_value=False):
|
||||
"""Retrieve the boolean value of an environment variable.
|
||||
|
||||
Args:
|
||||
var_name (str): The name of the environment variable to retrieve.
|
||||
default_value (bool): The default value to return if the variable
|
||||
is not found.
|
||||
|
||||
Returns:
|
||||
bool: The value of the environment variable, interpreted as a boolean.
|
||||
"""
|
||||
true_values = {'true', '1', 't', 'y', 'yes'}
|
||||
false_values = {'false', '0', 'f', 'n', 'no'}
|
||||
|
||||
# Retrieve the environment variable's value
|
||||
value = os.getenv(var_name, '').lower()
|
||||
|
||||
# Decide the boolean value based on the content of the string
|
||||
if value in true_values:
|
||||
return True
|
||||
elif value in false_values:
|
||||
return False
|
||||
else:
|
||||
return default_value
|
||||
|
||||
|
||||
# Check for openai API key
|
||||
if "OPENAI_API_KEY" not in os.environ:
|
||||
raise Exception("Must provide an OPENAI_API_KEY as an env var.")
|
||||
|
||||
|
||||
# Whether or not to enable langchain debugging
|
||||
DEBUG = get_boolean_env_var("DEBUG", False)
|
||||
# Set DEBUG env var to "true" if you wish to enable LC debugging module
|
||||
if DEBUG:
|
||||
import langchain
|
||||
langchain.debug=True
|
||||
|
||||
|
||||
# Embedding model
|
||||
EMBED_MODEL = os.getenv("EMBED_MODEL",
|
||||
"sentence-transformers/all-MiniLM-L6-v2")
|
||||
|
||||
# Redis Connection Information
|
||||
REDIS_HOST = os.getenv("REDIS_HOST", "localhost")
|
||||
REDIS_PORT = int(os.getenv("REDIS_PORT", 6379))
|
||||
|
||||
def format_redis_conn_from_env():
|
||||
redis_url = os.getenv("REDIS_URL", None)
|
||||
if redis_url:
|
||||
return redis_url
|
||||
else:
|
||||
using_ssl = get_boolean_env_var("REDIS_SSL", False)
|
||||
start = "rediss://" if using_ssl else "redis://"
|
||||
|
||||
# if using RBAC
|
||||
password = os.getenv("REDIS_PASSWORD", None)
|
||||
username = os.getenv("REDIS_USERNAME", "default")
|
||||
if password is not None:
|
||||
start += f"{username}:{password}@"
|
||||
|
||||
return start + f"{REDIS_HOST}:{REDIS_PORT}"
|
||||
|
||||
REDIS_URL = format_redis_conn_from_env()
|
||||
|
||||
# Vector Index Configuration
|
||||
INDEX_NAME = os.getenv("INDEX_NAME", "rag-redis")
|
||||
|
||||
|
||||
current_file_path = os.path.abspath(__file__)
|
||||
parent_dir = os.path.dirname(current_file_path)
|
||||
schema_path = os.path.join(parent_dir, 'schema.yml')
|
||||
INDEX_SCHEMA = schema_path
|
11
templates/rag-redis/rag_redis/schema.yml
Normal file
11
templates/rag-redis/rag_redis/schema.yml
Normal file
@@ -0,0 +1,11 @@
|
||||
text:
|
||||
- name: content
|
||||
- name: source
|
||||
numeric:
|
||||
- name: start_index
|
||||
vector:
|
||||
- name: content_vector
|
||||
algorithm: HNSW
|
||||
datatype: FLOAT32
|
||||
dims: 384
|
||||
distance_metric: COSINE
|
Reference in New Issue
Block a user