mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-06 05:25:04 +00:00
Redis langserve template (#12443)
Add Redis langserve template! Eventually will add semantic caching to this too. But I was struggling to get that to work for some reason with the LCEL implementation here. - **Description:** Introduces the Redis LangServe template. A simple RAG based app built on top of Redis that allows you to chat with company's public financial data (Edgar 10k filings) - **Issue:** None - **Dependencies:** The template contains the poetry project requirements to run this template - **Tag maintainer:** @baskaryan @Spartee - **Twitter handle:** @tchutch94 **Note**: this requires the commit here that deletes the `_aget_relevant_documents()` method from the Redis retriever class that wasn't implemented. That was breaking the langserve app. --------- Co-authored-by: Sam Partee <sam.partee@redis.com>
This commit is contained in:
68
templates/rag-redis/rag_redis/chain.py
Normal file
68
templates/rag-redis/rag_redis/chain.py
Normal file
@@ -0,0 +1,68 @@
|
||||
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||||
from langchain.vectorstores import Redis
|
||||
|
||||
from rag_redis.config import (
|
||||
EMBED_MODEL,
|
||||
INDEX_NAME,
|
||||
INDEX_SCHEMA,
|
||||
REDIS_URL,
|
||||
)
|
||||
|
||||
|
||||
# Make this look better in the docs.
|
||||
class Question(BaseModel):
|
||||
__root__: str
|
||||
|
||||
|
||||
# Init Embeddings
|
||||
embedder = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
||||
|
||||
# Connect to pre-loaded vectorstore
|
||||
# run the ingest.py script to populate this
|
||||
vectorstore = Redis.from_existing_index(
|
||||
embedding=embedder,
|
||||
index_name=INDEX_NAME,
|
||||
schema=INDEX_SCHEMA,
|
||||
redis_url=REDIS_URL
|
||||
)
|
||||
# TODO allow user to change parameters
|
||||
retriever = vectorstore.as_retriever(search_type="mmr")
|
||||
|
||||
|
||||
# Define our prompt
|
||||
template = """
|
||||
Use the following pieces of context from Nike's financial 10k filings
|
||||
dataset to answer the question. Do not make up an answer if there is no
|
||||
context provided to help answer it. Include the 'source' and 'start_index'
|
||||
from the metadata included in the context you used to answer the question
|
||||
|
||||
Context:
|
||||
---------
|
||||
{context}
|
||||
|
||||
---------
|
||||
Question: {question}
|
||||
---------
|
||||
|
||||
Answer:
|
||||
"""
|
||||
|
||||
|
||||
prompt = ChatPromptTemplate.from_template(template)
|
||||
|
||||
|
||||
# RAG Chain
|
||||
model = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
|
||||
chain = (
|
||||
RunnableParallel({"context": retriever,
|
||||
"question": RunnablePassthrough()})
|
||||
| prompt
|
||||
| model
|
||||
| StrOutputParser()
|
||||
).with_types(input_type=Question)
|
Reference in New Issue
Block a user