core[minor]: Add Graph Store component (#23092)

This PR introduces a GraphStore component. GraphStore extends
VectorStore with the concept of links between documents based on
document metadata. This allows linking documents based on a variety of
techniques, including common keywords, explicit links in the content,
and other patterns.

This works with existing Documents, so it’s easy to extend existing
VectorStores to be used as GraphStores. The interface can be implemented
for any Vector Store technology that supports metadata, not only graph
DBs.

When retrieving documents for a given query, the first level of search
is done using classical similarity search. Next, links may be followed
using various traversal strategies to get additional documents. This
allows documents to be retrieved that aren’t directly similar to the
query but contain relevant information.

2 retrieving methods are added to the VectorStore ones : 
* traversal_search which gets all linked documents up to a certain depth
* mmr_traversal_search which selects linked documents using an MMR
algorithm to have more diverse results.

If a depth of retrieval of 0 is used, GraphStore is effectively a
VectorStore. It enables an easy transition from a simple VectorStore to
GraphStore by adding links between documents as a second step.

An implementation for Apache Cassandra is also proposed.

See
https://github.com/datastax/ragstack-ai/blob/main/libs/knowledge-store/notebooks/astra_support.ipynb
for a notebook explaining how to use GraphStore and that shows that it
can answer correctly to questions that a simple VectorStore cannot.

**Twitter handle:** _cbornet
This commit is contained in:
Christophe Bornet
2024-07-05 18:24:10 +02:00
committed by GitHub
parent 77f5fc3d55
commit 42d049f618
8 changed files with 1281 additions and 0 deletions

View File

@@ -0,0 +1,3 @@
from langchain_community.graph_vectorstores.cassandra import CassandraGraphVectorStore
__all__ = ["CassandraGraphVectorStore"]

View File

@@ -0,0 +1,172 @@
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
Iterable,
List,
Optional,
Type,
)
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.graph_vectorstores.base import (
GraphVectorStore,
Node,
nodes_to_documents,
)
from langchain_community.utilities.cassandra import SetupMode
if TYPE_CHECKING:
from cassandra.cluster import Session
class CassandraGraphVectorStore(GraphVectorStore):
def __init__(
self,
embedding: Embeddings,
*,
node_table: str = "graph_nodes",
targets_table: str = "graph_targets",
session: Optional[Session] = None,
keyspace: Optional[str] = None,
setup_mode: SetupMode = SetupMode.SYNC,
):
"""
Create the hybrid graph store.
Parameters configure the ways that edges should be added between
documents. Many take `Union[bool, Set[str]]`, with `False` disabling
inference, `True` enabling it globally between all documents, and a set
of metadata fields defining a scope in which to enable it. Specifically,
passing a set of metadata fields such as `source` only links documents
with the same `source` metadata value.
Args:
embedding: The embeddings to use for the document content.
setup_mode: Mode used to create the Cassandra table (SYNC,
ASYNC or OFF).
"""
try:
from ragstack_knowledge_store import EmbeddingModel, graph_store
except (ImportError, ModuleNotFoundError):
raise ImportError(
"Could not import ragstack-knowledge-store python package. "
"Please install it with `pip install ragstack-knowledge-store`."
)
self._embedding = embedding
_setup_mode = getattr(graph_store.SetupMode, setup_mode.name)
class _EmbeddingModelAdapter(EmbeddingModel):
def __init__(self, embeddings: Embeddings):
self.embeddings = embeddings
def embed_texts(self, texts: List[str]) -> List[List[float]]:
return self.embeddings.embed_documents(texts)
def embed_query(self, text: str) -> List[float]:
return self.embeddings.embed_query(text)
async def aembed_texts(self, texts: List[str]) -> List[List[float]]:
return await self.embeddings.aembed_documents(texts)
async def aembed_query(self, text: str) -> List[float]:
return await self.embeddings.aembed_query(text)
self.store = graph_store.GraphStore(
embedding=_EmbeddingModelAdapter(embedding),
node_table=node_table,
targets_table=targets_table,
session=session,
keyspace=keyspace,
setup_mode=_setup_mode,
)
@property
def embeddings(self) -> Optional[Embeddings]:
return self._embedding
def add_nodes(
self,
nodes: Iterable[Node],
**kwargs: Any,
) -> Iterable[str]:
return self.store.add_nodes(nodes)
@classmethod
def from_texts(
cls: Type["CassandraGraphVectorStore"],
texts: Iterable[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[Iterable[str]] = None,
**kwargs: Any,
) -> "CassandraGraphVectorStore":
"""Return CassandraGraphVectorStore initialized from texts and embeddings."""
store = cls(embedding, **kwargs)
store.add_texts(texts, metadatas, ids=ids)
return store
@classmethod
def from_documents(
cls: Type["CassandraGraphVectorStore"],
documents: Iterable[Document],
embedding: Embeddings,
ids: Optional[Iterable[str]] = None,
**kwargs: Any,
) -> "CassandraGraphVectorStore":
"""Return CassandraGraphVectorStore initialized from documents and
embeddings."""
store = cls(embedding, **kwargs)
store.add_documents(documents, ids=ids)
return store
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
embedding_vector = self._embedding.embed_query(query)
return self.similarity_search_by_vector(
embedding_vector,
k=k,
)
def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
nodes = self.store.similarity_search(embedding, k=k)
return list(nodes_to_documents(nodes))
def traversal_search(
self,
query: str,
*,
k: int = 4,
depth: int = 1,
**kwargs: Any,
) -> Iterable[Document]:
nodes = self.store.traversal_search(query, k=k, depth=depth)
return nodes_to_documents(nodes)
def mmr_traversal_search(
self,
query: str,
*,
k: int = 4,
depth: int = 2,
fetch_k: int = 100,
adjacent_k: int = 10,
lambda_mult: float = 0.5,
score_threshold: float = float("-inf"),
**kwargs: Any,
) -> Iterable[Document]:
nodes = self.store.mmr_traversal_search(
query,
k=k,
depth=depth,
fetch_k=fetch_k,
adjacent_k=adjacent_k,
lambda_mult=lambda_mult,
score_threshold=score_threshold,
)
return nodes_to_documents(nodes)

View File

@@ -0,0 +1,272 @@
import math
import os
from typing import Iterable, List, Optional, Type
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.graph_vectorstores.links import METADATA_LINKS_KEY, Link
from langchain_community.graph_vectorstores import CassandraGraphVectorStore
CASSANDRA_DEFAULT_KEYSPACE = "graph_test_keyspace"
def _get_graph_store(
embedding_class: Type[Embeddings], documents: Iterable[Document] = ()
) -> CassandraGraphVectorStore:
import cassio
from cassandra.cluster import Cluster
from cassio.config import check_resolve_session, resolve_keyspace
node_table = "graph_test_node_table"
edge_table = "graph_test_edge_table"
if any(
env_var in os.environ
for env_var in [
"CASSANDRA_CONTACT_POINTS",
"ASTRA_DB_APPLICATION_TOKEN",
"ASTRA_DB_INIT_STRING",
]
):
cassio.init(auto=True)
session = check_resolve_session()
else:
cluster = Cluster()
session = cluster.connect()
keyspace = resolve_keyspace() or CASSANDRA_DEFAULT_KEYSPACE
cassio.init(session=session, keyspace=keyspace)
# ensure keyspace exists
session.execute(
(
f"CREATE KEYSPACE IF NOT EXISTS {keyspace} "
f"WITH replication = {{'class': 'SimpleStrategy', 'replication_factor': 1}}"
)
)
session.execute(f"DROP TABLE IF EXISTS {keyspace}.{node_table}")
session.execute(f"DROP TABLE IF EXISTS {keyspace}.{edge_table}")
store = CassandraGraphVectorStore.from_documents(
documents,
embedding=embedding_class(),
session=session,
keyspace=keyspace,
node_table=node_table,
targets_table=edge_table,
)
return store
class FakeEmbeddings(Embeddings):
"""Fake embeddings functionality for testing."""
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Return simple embeddings.
Embeddings encode each text as its index."""
return [[float(1.0)] * 9 + [float(i)] for i in range(len(texts))]
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
return self.embed_documents(texts)
def embed_query(self, text: str) -> List[float]:
"""Return constant query embeddings.
Embeddings are identical to embed_documents(texts)[0].
Distance to each text will be that text's index,
as it was passed to embed_documents."""
return [float(1.0)] * 9 + [float(0.0)]
async def aembed_query(self, text: str) -> List[float]:
return self.embed_query(text)
class AngularTwoDimensionalEmbeddings(Embeddings):
"""
From angles (as strings in units of pi) to unit embedding vectors on a circle.
"""
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""
Make a list of texts into a list of embedding vectors.
"""
return [self.embed_query(text) for text in texts]
def embed_query(self, text: str) -> List[float]:
"""
Convert input text to a 'vector' (list of floats).
If the text is a number, use it as the angle for the
unit vector in units of pi.
Any other input text becomes the singular result [0, 0] !
"""
try:
angle = float(text)
return [math.cos(angle * math.pi), math.sin(angle * math.pi)]
except ValueError:
# Assume: just test string, no attention is paid to values.
return [0.0, 0.0]
def _result_ids(docs: Iterable[Document]) -> List[Optional[str]]:
return [doc.id for doc in docs]
def test_mmr_traversal() -> None:
"""
Test end to end construction and MMR search.
The embedding function used here ensures `texts` become
the following vectors on a circle (numbered v0 through v3):
______ v2
/ \
/ | v1
v3 | . | query
| / v0
|______/ (N.B. very crude drawing)
With fetch_k==2 and k==2, when query is at (1, ),
one expects that v2 and v0 are returned (in some order)
because v1 is "too close" to v0 (and v0 is closer than v1)).
Both v2 and v3 are reachable via edges from v0, so once it is
selected, those are both considered.
"""
store = _get_graph_store(AngularTwoDimensionalEmbeddings)
v0 = Document(
id="v0",
page_content="-0.124",
metadata={
METADATA_LINKS_KEY: [
Link.outgoing(kind="explicit", tag="link"),
],
},
)
v1 = Document(
id="v1",
page_content="+0.127",
)
v2 = Document(
id="v2",
page_content="+0.25",
metadata={
METADATA_LINKS_KEY: [
Link.incoming(kind="explicit", tag="link"),
],
},
)
v3 = Document(
id="v3",
page_content="+1.0",
metadata={
METADATA_LINKS_KEY: [
Link.incoming(kind="explicit", tag="link"),
],
},
)
store.add_documents([v0, v1, v2, v3])
results = store.mmr_traversal_search("0.0", k=2, fetch_k=2)
assert _result_ids(results) == ["v0", "v2"]
# With max depth 0, no edges are traversed, so this doesn't reach v2 or v3.
# So it ends up picking "v1" even though it's similar to "v0".
results = store.mmr_traversal_search("0.0", k=2, fetch_k=2, depth=0)
assert _result_ids(results) == ["v0", "v1"]
# With max depth 0 but higher `fetch_k`, we encounter v2
results = store.mmr_traversal_search("0.0", k=2, fetch_k=3, depth=0)
assert _result_ids(results) == ["v0", "v2"]
# v0 score is .46, v2 score is 0.16 so it won't be chosen.
results = store.mmr_traversal_search("0.0", k=2, score_threshold=0.2)
assert _result_ids(results) == ["v0"]
# with k=4 we should get all of the documents.
results = store.mmr_traversal_search("0.0", k=4)
assert _result_ids(results) == ["v0", "v2", "v1", "v3"]
def test_write_retrieve_keywords() -> None:
from langchain_openai import OpenAIEmbeddings
greetings = Document(
id="greetings",
page_content="Typical Greetings",
metadata={
METADATA_LINKS_KEY: [
Link.incoming(kind="parent", tag="parent"),
],
},
)
doc1 = Document(
id="doc1",
page_content="Hello World",
metadata={
METADATA_LINKS_KEY: [
Link.outgoing(kind="parent", tag="parent"),
Link.bidir(kind="kw", tag="greeting"),
Link.bidir(kind="kw", tag="world"),
],
},
)
doc2 = Document(
id="doc2",
page_content="Hello Earth",
metadata={
METADATA_LINKS_KEY: [
Link.outgoing(kind="parent", tag="parent"),
Link.bidir(kind="kw", tag="greeting"),
Link.bidir(kind="kw", tag="earth"),
],
},
)
store = _get_graph_store(OpenAIEmbeddings, [greetings, doc1, doc2])
# Doc2 is more similar, but World and Earth are similar enough that doc1 also
# shows up.
results: Iterable[Document] = store.similarity_search("Earth", k=2)
assert _result_ids(results) == ["doc2", "doc1"]
results = store.similarity_search("Earth", k=1)
assert _result_ids(results) == ["doc2"]
results = store.traversal_search("Earth", k=2, depth=0)
assert _result_ids(results) == ["doc2", "doc1"]
results = store.traversal_search("Earth", k=2, depth=1)
assert _result_ids(results) == ["doc2", "doc1", "greetings"]
# K=1 only pulls in doc2 (Hello Earth)
results = store.traversal_search("Earth", k=1, depth=0)
assert _result_ids(results) == ["doc2"]
# K=1 only pulls in doc2 (Hello Earth). Depth=1 traverses to parent and via
# keyword edge.
results = store.traversal_search("Earth", k=1, depth=1)
assert set(_result_ids(results)) == {"doc2", "doc1", "greetings"}
def test_metadata() -> None:
store = _get_graph_store(FakeEmbeddings)
store.add_documents(
[
Document(
id="a",
page_content="A",
metadata={
METADATA_LINKS_KEY: [
Link.incoming(kind="hyperlink", tag="http://a"),
Link.bidir(kind="other", tag="foo"),
],
"other": "some other field",
},
)
]
)
results = store.similarity_search("A")
assert len(results) == 1
assert results[0].id == "a"
metadata = results[0].metadata
assert metadata["other"] == "some other field"
assert set(metadata[METADATA_LINKS_KEY]) == {
Link.incoming(kind="hyperlink", tag="http://a"),
Link.bidir(kind="other", tag="foo"),
}