MMR example selector (#377)

implement max marginal relevance example selector
This commit is contained in:
Harrison Chase
2022-12-19 17:09:27 -05:00
committed by GitHub
parent ffed5e0056
commit 46c428234f
6 changed files with 258 additions and 5 deletions

View File

@@ -572,8 +572,8 @@
"text": [
"Give the antonym of every input\n",
"\n",
"Input: tall\n",
"Output: short\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: fat\n",
"Output:\n"
@@ -597,8 +597,8 @@
"text": [
"Give the antonym of every input\n",
"\n",
"Input: enthusiastic\n",
"Output: apathetic\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: joyful\n",
"Output:\n"
@@ -611,6 +611,110 @@
"print(similar_prompt.format(adjective=\"joyful\"))"
]
},
{
"cell_type": "markdown",
"id": "bc35afd0",
"metadata": {},
"source": [
"### Maximal Marginal Relevance ExampleSelector\n",
"\n",
"The MaxMarginalRelevanceExampleSelector selects examples based on a combination of which examples are most similar to the inputs, while also optimizing for diversity. It does this by finding the examples with the embeddings that have the greatest cosine similarity with the inputs, and then iteratively adding them while penalizing them for closeness to already selected examples.\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "ac95c968",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.example_selector import MaxMarginalRelevanceExampleSelector"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "db579bea",
"metadata": {},
"outputs": [],
"source": [
"example_selector = MaxMarginalRelevanceExampleSelector.from_examples(\n",
" # This is the list of examples available to select from.\n",
" examples, \n",
" # This is the embedding class used to produce embeddings which are used to measure semantic similarity.\n",
" OpenAIEmbeddings(), \n",
" # This is the VectorStore class that is used to store the embeddings and do a similarity search over.\n",
" FAISS, \n",
" # This is the number of examples to produce.\n",
" k=2\n",
")\n",
"mmr_prompt = FewShotPromptTemplate(\n",
" # We provide an ExampleSelector instead of examples.\n",
" example_selector=example_selector,\n",
" example_prompt=example_prompt,\n",
" prefix=\"Give the antonym of every input\",\n",
" suffix=\"Input: {adjective}\\nOutput:\", \n",
" input_variables=[\"adjective\"],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "cd76e344",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: windy\n",
"Output: calm\n",
"\n",
"Input: worried\n",
"Output:\n"
]
}
],
"source": [
"# Input is a feeling, so should select the happy/sad example as the first one\n",
"print(mmr_prompt.format(adjective=\"worried\"))"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "cf82956b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: enthusiastic\n",
"Output: apathetic\n",
"\n",
"Input: worried\n",
"Output:\n"
]
}
],
"source": [
"# Let's compare this to what we would just get if we went solely off of similarity\n",
"similar_prompt.example_selector.k = 2\n",
"print(similar_prompt.format(adjective=\"worried\"))"
]
},
{
"cell_type": "markdown",
"id": "dbc32551",