mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-14 22:17:15 +00:00
Added GigaChat chat model support (#12201)
- **Description:** Added integration with [GigaChat](https://developers.sber.ru/portal/products/gigachat) language model. - **Twitter handle:** @dvoshansky
This commit is contained in:
@@ -28,6 +28,7 @@ from langchain.chat_models.ernie import ErnieBotChat
|
||||
from langchain.chat_models.everlyai import ChatEverlyAI
|
||||
from langchain.chat_models.fake import FakeListChatModel
|
||||
from langchain.chat_models.fireworks import ChatFireworks
|
||||
from langchain.chat_models.gigachat import GigaChat
|
||||
from langchain.chat_models.google_palm import ChatGooglePalm
|
||||
from langchain.chat_models.human import HumanInputChatModel
|
||||
from langchain.chat_models.hunyuan import ChatHunyuan
|
||||
@@ -71,4 +72,5 @@ __all__ = [
|
||||
"ChatYandexGPT",
|
||||
"ChatBaichuan",
|
||||
"ChatHunyuan",
|
||||
"GigaChat",
|
||||
]
|
||||
|
179
libs/langchain/langchain/chat_models/gigachat.py
Normal file
179
libs/langchain/langchain/chat_models/gigachat.py
Normal file
@@ -0,0 +1,179 @@
|
||||
import logging
|
||||
from typing import Any, AsyncIterator, Iterator, List, Optional
|
||||
|
||||
from langchain.callbacks.manager import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain.chat_models.base import (
|
||||
BaseChatModel,
|
||||
_agenerate_from_stream,
|
||||
_generate_from_stream,
|
||||
)
|
||||
from langchain.llms.gigachat import _BaseGigaChat
|
||||
from langchain.schema import ChatResult
|
||||
from langchain.schema.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
ChatMessage,
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
)
|
||||
from langchain.schema.output import ChatGeneration, ChatGenerationChunk
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _convert_dict_to_message(message: Any) -> BaseMessage:
|
||||
from gigachat.models import MessagesRole
|
||||
|
||||
if message.role == MessagesRole.SYSTEM:
|
||||
return SystemMessage(content=message.content)
|
||||
elif message.role == MessagesRole.USER:
|
||||
return HumanMessage(content=message.content)
|
||||
elif message.role == MessagesRole.ASSISTANT:
|
||||
return AIMessage(content=message.content)
|
||||
else:
|
||||
raise TypeError(f"Got unknown role {message.role} {message}")
|
||||
|
||||
|
||||
def _convert_message_to_dict(message: BaseMessage) -> Any:
|
||||
from gigachat.models import Messages, MessagesRole
|
||||
|
||||
if isinstance(message, SystemMessage):
|
||||
return Messages(role=MessagesRole.SYSTEM, content=message.content)
|
||||
elif isinstance(message, HumanMessage):
|
||||
return Messages(role=MessagesRole.USER, content=message.content)
|
||||
elif isinstance(message, AIMessage):
|
||||
return Messages(role=MessagesRole.ASSISTANT, content=message.content)
|
||||
elif isinstance(message, ChatMessage):
|
||||
return Messages(role=MessagesRole(message.role), content=message.content)
|
||||
else:
|
||||
raise TypeError(f"Got unknown type {message}")
|
||||
|
||||
|
||||
class GigaChat(_BaseGigaChat, BaseChatModel):
|
||||
"""`GigaChat` large language models API.
|
||||
|
||||
To use, you should pass login and password to access GigaChat API or use token.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.chat_models import GigaChat
|
||||
giga = GigaChat(credentials=..., verify_ssl_certs=False)
|
||||
"""
|
||||
|
||||
def _build_payload(self, messages: List[BaseMessage]) -> Any:
|
||||
from gigachat.models import Chat
|
||||
|
||||
payload = Chat(
|
||||
messages=[_convert_message_to_dict(m) for m in messages],
|
||||
profanity_check=self.profanity,
|
||||
)
|
||||
if self.temperature is not None:
|
||||
payload.temperature = self.temperature
|
||||
if self.max_tokens is not None:
|
||||
payload.max_tokens = self.max_tokens
|
||||
|
||||
if self.verbose:
|
||||
logger.info("Giga request: %s", payload.dict())
|
||||
|
||||
return payload
|
||||
|
||||
def _create_chat_result(self, response: Any) -> ChatResult:
|
||||
generations = []
|
||||
for res in response.choices:
|
||||
message = _convert_dict_to_message(res.message)
|
||||
finish_reason = res.finish_reason
|
||||
gen = ChatGeneration(
|
||||
message=message,
|
||||
generation_info={"finish_reason": finish_reason},
|
||||
)
|
||||
generations.append(gen)
|
||||
if finish_reason != "stop":
|
||||
logger.warning(
|
||||
"Giga generation stopped with reason: %s",
|
||||
finish_reason,
|
||||
)
|
||||
if self.verbose:
|
||||
logger.info("Giga response: %s", message.content)
|
||||
llm_output = {"token_usage": response.usage, "model_name": response.model}
|
||||
return ChatResult(generations=generations, llm_output=llm_output)
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
stream: Optional[bool] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
should_stream = stream if stream is not None else self.streaming
|
||||
if should_stream:
|
||||
stream_iter = self._stream(
|
||||
messages, stop=stop, run_manager=run_manager, **kwargs
|
||||
)
|
||||
return _generate_from_stream(stream_iter)
|
||||
|
||||
payload = self._build_payload(messages)
|
||||
response = self._client.chat(payload)
|
||||
|
||||
return self._create_chat_result(response)
|
||||
|
||||
async def _agenerate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
stream: Optional[bool] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
should_stream = stream if stream is not None else self.streaming
|
||||
if should_stream:
|
||||
stream_iter = self._astream(
|
||||
messages, stop=stop, run_manager=run_manager, **kwargs
|
||||
)
|
||||
return await _agenerate_from_stream(stream_iter)
|
||||
|
||||
payload = self._build_payload(messages)
|
||||
response = await self._client.achat(payload)
|
||||
|
||||
return self._create_chat_result(response)
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
payload = self._build_payload(messages)
|
||||
|
||||
for chunk in self._client.stream(payload):
|
||||
if chunk.choices:
|
||||
content = chunk.choices[0].delta.content
|
||||
yield ChatGenerationChunk(message=AIMessageChunk(content=content))
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(content)
|
||||
|
||||
async def _astream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[ChatGenerationChunk]:
|
||||
payload = self._build_payload(messages)
|
||||
|
||||
async for chunk in self._client.astream(payload):
|
||||
if chunk.choices:
|
||||
content = chunk.choices[0].delta.content
|
||||
yield ChatGenerationChunk(message=AIMessageChunk(content=content))
|
||||
if run_manager:
|
||||
await run_manager.on_llm_new_token(content)
|
||||
|
||||
def get_num_tokens(self, text: str) -> int:
|
||||
"""Count approximate number of tokens"""
|
||||
return round(len(text) / 4.6)
|
@@ -184,6 +184,12 @@ def _import_forefrontai() -> Any:
|
||||
return ForefrontAI
|
||||
|
||||
|
||||
def _import_gigachat() -> Any:
|
||||
from langchain.llms.gigachat import GigaChat
|
||||
|
||||
return GigaChat
|
||||
|
||||
|
||||
def _import_google_palm() -> Any:
|
||||
from langchain.llms.google_palm import GooglePalm
|
||||
|
||||
@@ -547,6 +553,8 @@ def __getattr__(name: str) -> Any:
|
||||
return _import_fireworks()
|
||||
elif name == "ForefrontAI":
|
||||
return _import_forefrontai()
|
||||
elif name == "GigaChat":
|
||||
return _import_gigachat()
|
||||
elif name == "GooglePalm":
|
||||
return _import_google_palm()
|
||||
elif name == "GooseAI":
|
||||
@@ -686,6 +694,7 @@ __all__ = [
|
||||
"FakeListLLM",
|
||||
"Fireworks",
|
||||
"ForefrontAI",
|
||||
"GigaChat",
|
||||
"GPT4All",
|
||||
"GooglePalm",
|
||||
"GooseAI",
|
||||
@@ -767,6 +776,7 @@ def get_type_to_cls_dict() -> Dict[str, Callable[[], Type[BaseLLM]]]:
|
||||
"edenai": _import_edenai,
|
||||
"fake-list": _import_fake,
|
||||
"forefrontai": _import_forefrontai,
|
||||
"giga-chat-model": _import_gigachat,
|
||||
"google_palm": _import_google_palm,
|
||||
"gooseai": _import_gooseai,
|
||||
"gradient": _import_gradient_ai,
|
||||
|
259
libs/langchain/langchain/llms/gigachat.py
Normal file
259
libs/langchain/langchain/llms/gigachat.py
Normal file
@@ -0,0 +1,259 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
from functools import cached_property
|
||||
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
|
||||
|
||||
from langchain.callbacks.manager import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain.llms.base import BaseLLM
|
||||
from langchain.load.serializable import Serializable
|
||||
from langchain.pydantic_v1 import root_validator
|
||||
from langchain.schema.output import Generation, GenerationChunk, LLMResult
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class _BaseGigaChat(Serializable):
|
||||
base_url: Optional[str] = None
|
||||
""" Base API URL """
|
||||
auth_url: Optional[str] = None
|
||||
""" Auth URL """
|
||||
credentials: Optional[str] = None
|
||||
""" Auth Token """
|
||||
scope: Optional[str] = None
|
||||
""" Permission scope for access token """
|
||||
|
||||
access_token: Optional[str] = None
|
||||
""" Access token for GigaChat """
|
||||
|
||||
model: Optional[str] = None
|
||||
"""Model name to use."""
|
||||
user: Optional[str] = None
|
||||
""" Username for authenticate """
|
||||
password: Optional[str] = None
|
||||
""" Password for authenticate """
|
||||
|
||||
timeout: Optional[float] = None
|
||||
""" Timeout for request """
|
||||
verify_ssl_certs: Optional[bool] = None
|
||||
""" Check certificates for all requests """
|
||||
|
||||
ca_bundle_file: Optional[str] = None
|
||||
cert_file: Optional[str] = None
|
||||
key_file: Optional[str] = None
|
||||
key_file_password: Optional[str] = None
|
||||
# Support for connection to GigaChat through SSL certificates
|
||||
|
||||
profanity: bool = True
|
||||
""" Check for profanity """
|
||||
streaming: bool = False
|
||||
""" Whether to stream the results or not. """
|
||||
temperature: Optional[float] = None
|
||||
"""What sampling temperature to use."""
|
||||
max_tokens: Optional[int] = None
|
||||
""" Maximum number of tokens to generate """
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "giga-chat-model"
|
||||
|
||||
@property
|
||||
def lc_secrets(self) -> Dict[str, str]:
|
||||
return {
|
||||
"credentials": "GIGACHAT_CREDENTIALS",
|
||||
"access_token": "GIGACHAT_ACCESS_TOKEN",
|
||||
"password": "GIGACHAT_PASSWORD",
|
||||
"key_file_password": "GIGACHAT_KEY_FILE_PASSWORD",
|
||||
}
|
||||
|
||||
@property
|
||||
def lc_serializable(self) -> bool:
|
||||
return True
|
||||
|
||||
@cached_property
|
||||
def _client(self) -> Any:
|
||||
"""Returns GigaChat API client"""
|
||||
import gigachat
|
||||
|
||||
return gigachat.GigaChat(
|
||||
base_url=self.base_url,
|
||||
auth_url=self.auth_url,
|
||||
credentials=self.credentials,
|
||||
scope=self.scope,
|
||||
access_token=self.access_token,
|
||||
model=self.model,
|
||||
user=self.user,
|
||||
password=self.password,
|
||||
timeout=self.timeout,
|
||||
verify_ssl_certs=self.verify_ssl_certs,
|
||||
ca_bundle_file=self.ca_bundle_file,
|
||||
cert_file=self.cert_file,
|
||||
key_file=self.key_file,
|
||||
key_file_password=self.key_file_password,
|
||||
)
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate authenticate data in environment and python package is installed."""
|
||||
try:
|
||||
import gigachat # noqa: F401
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import gigachat python package. "
|
||||
"Please install it with `pip install gigachat`."
|
||||
)
|
||||
return values
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {
|
||||
"temperature": self.temperature,
|
||||
"model": self.model,
|
||||
"profanity": self.profanity,
|
||||
"streaming": self.streaming,
|
||||
"max_tokens": self.max_tokens,
|
||||
}
|
||||
|
||||
|
||||
class GigaChat(_BaseGigaChat, BaseLLM):
|
||||
"""`GigaChat` large language models API.
|
||||
|
||||
To use, you should pass login and password to access GigaChat API or use token.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.llms import GigaChat
|
||||
giga = GigaChat(credentials=..., verify_ssl_certs=False)
|
||||
"""
|
||||
|
||||
def _build_payload(self, messages: List[str]) -> Dict[str, Any]:
|
||||
payload: Dict[str, Any] = {
|
||||
"messages": [{"role": "user", "content": m} for m in messages],
|
||||
"profanity_check": self.profanity,
|
||||
}
|
||||
if self.temperature is not None:
|
||||
payload["temperature"] = self.temperature
|
||||
if self.max_tokens is not None:
|
||||
payload["max_tokens"] = self.max_tokens
|
||||
if self.model:
|
||||
payload["model"] = self.model
|
||||
|
||||
if self.verbose:
|
||||
logger.info("Giga request: %s", payload)
|
||||
|
||||
return payload
|
||||
|
||||
def _create_llm_result(self, response: Any) -> LLMResult:
|
||||
generations = []
|
||||
for res in response.choices:
|
||||
finish_reason = res.finish_reason
|
||||
gen = Generation(
|
||||
text=res.message.content,
|
||||
generation_info={"finish_reason": finish_reason},
|
||||
)
|
||||
generations.append([gen])
|
||||
if finish_reason != "stop":
|
||||
logger.warning(
|
||||
"Giga generation stopped with reason: %s",
|
||||
finish_reason,
|
||||
)
|
||||
if self.verbose:
|
||||
logger.info("Giga response: %s", res.message.content)
|
||||
token_usage = response.usage
|
||||
llm_output = {"token_usage": token_usage, "model_name": response.model}
|
||||
return LLMResult(generations=generations, llm_output=llm_output)
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
stream: Optional[bool] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
should_stream = stream if stream is not None else self.streaming
|
||||
if should_stream:
|
||||
generation: Optional[GenerationChunk] = None
|
||||
stream_iter = self._stream(
|
||||
prompts[0], stop=stop, run_manager=run_manager, **kwargs
|
||||
)
|
||||
for chunk in stream_iter:
|
||||
if generation is None:
|
||||
generation = chunk
|
||||
else:
|
||||
generation += chunk
|
||||
assert generation is not None
|
||||
return LLMResult(generations=[[generation]])
|
||||
|
||||
payload = self._build_payload(prompts)
|
||||
response = self._client.chat(payload)
|
||||
|
||||
return self._create_llm_result(response)
|
||||
|
||||
async def _agenerate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
stream: Optional[bool] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
should_stream = stream if stream is not None else self.streaming
|
||||
if should_stream:
|
||||
generation: Optional[GenerationChunk] = None
|
||||
stream_iter = self._astream(
|
||||
prompts[0], stop=stop, run_manager=run_manager, **kwargs
|
||||
)
|
||||
async for chunk in stream_iter:
|
||||
if generation is None:
|
||||
generation = chunk
|
||||
else:
|
||||
generation += chunk
|
||||
assert generation is not None
|
||||
return LLMResult(generations=[[generation]])
|
||||
|
||||
payload = self._build_payload(prompts)
|
||||
response = await self._client.achat(payload)
|
||||
|
||||
return self._create_llm_result(response)
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[GenerationChunk]:
|
||||
payload = self._build_payload([prompt])
|
||||
|
||||
for chunk in self._client.stream(payload):
|
||||
if chunk.choices:
|
||||
content = chunk.choices[0].delta.content
|
||||
yield GenerationChunk(text=content)
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(content)
|
||||
|
||||
async def _astream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[GenerationChunk]:
|
||||
payload = self._build_payload([prompt])
|
||||
|
||||
async for chunk in self._client.astream(payload):
|
||||
if chunk.choices:
|
||||
content = chunk.choices[0].delta.content
|
||||
yield GenerationChunk(text=content)
|
||||
if run_manager:
|
||||
await run_manager.on_llm_new_token(content)
|
||||
|
||||
def get_num_tokens(self, text: str) -> int:
|
||||
"""Count approximate number of tokens"""
|
||||
return round(len(text) / 4.6)
|
Reference in New Issue
Block a user