mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-01 19:03:25 +00:00
Added GigaChat chat model support (#12201)
- **Description:** Added integration with [GigaChat](https://developers.sber.ru/portal/products/gigachat) language model. - **Twitter handle:** @dvoshansky
This commit is contained in:
parent
9c2c9c5274
commit
46e28b9613
114
docs/docs/integrations/chat/gigachat.ipynb
Normal file
114
docs/docs/integrations/chat/gigachat.ipynb
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"source": [
|
||||||
|
"# GigaChat\n",
|
||||||
|
"This notebook shows how to use LangChain with [GigaChat](https://developers.sber.ru/portal/products/gigachat).\n",
|
||||||
|
"To use you need to install ```gigachat``` python package."
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": true
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# !pip install gigachat"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"source": [
|
||||||
|
"To get GigaChat credentials you need to [create account](https://developers.sber.ru/studio/login) and [get access to API](https://developers.sber.ru/docs/ru/gigachat/api/integration)\n",
|
||||||
|
"## Example"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 9,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import os\n",
|
||||||
|
"from getpass import getpass\n",
|
||||||
|
"\n",
|
||||||
|
"os.environ['GIGACHAT_CREDENTIALS'] = getpass()"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 10,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.chat_models import GigaChat\n",
|
||||||
|
"\n",
|
||||||
|
"chat = GigaChat(verify_ssl_certs=False)"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 31,
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"What do you get when you cross a goat and a skunk? A smelly goat!\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"from langchain.schema import SystemMessage, HumanMessage\n",
|
||||||
|
"\n",
|
||||||
|
"messages = [\n",
|
||||||
|
" SystemMessage(\n",
|
||||||
|
" content=\"You are a helpful AI that shares everything you know. Talk in English.\"\n",
|
||||||
|
" ),\n",
|
||||||
|
" HumanMessage(\n",
|
||||||
|
" content=\"Tell me a joke\"\n",
|
||||||
|
" ),\n",
|
||||||
|
"]\n",
|
||||||
|
"\n",
|
||||||
|
"print(chat(messages).content)"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 2
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython2",
|
||||||
|
"version": "2.7.6"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 0
|
||||||
|
}
|
113
docs/docs/integrations/llms/gigachat.ipynb
Normal file
113
docs/docs/integrations/llms/gigachat.ipynb
Normal file
@ -0,0 +1,113 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"source": [
|
||||||
|
"# GigaChat\n",
|
||||||
|
"This notebook shows how to use LangChain with [GigaChat](https://developers.sber.ru/portal/products/gigachat).\n",
|
||||||
|
"To use you need to install ```gigachat``` python package."
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": true
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# !pip install gigachat"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"source": [
|
||||||
|
"To get GigaChat credentials you need to [create account](https://developers.sber.ru/studio/login) and [get access to API](https://developers.sber.ru/docs/ru/gigachat/api/integration)\n",
|
||||||
|
"## Example"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import os\n",
|
||||||
|
"from getpass import getpass\n",
|
||||||
|
"\n",
|
||||||
|
"os.environ['GIGACHAT_CREDENTIALS'] = getpass()"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.llms import GigaChat\n",
|
||||||
|
"\n",
|
||||||
|
"llm = GigaChat(verify_ssl_certs=False)"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"The capital of Russia is Moscow.\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"from langchain.prompts import PromptTemplate\n",
|
||||||
|
"from langchain.chains import LLMChain\n",
|
||||||
|
"\n",
|
||||||
|
"template = \"What is capital of {country}?\"\n",
|
||||||
|
"\n",
|
||||||
|
"prompt = PromptTemplate(template=template, input_variables=[\"country\"])\n",
|
||||||
|
"\n",
|
||||||
|
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
|
||||||
|
"\n",
|
||||||
|
"generated = llm_chain.run(country=\"Russia\")\n",
|
||||||
|
"print(generated)"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 2
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython2",
|
||||||
|
"version": "2.7.6"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 0
|
||||||
|
}
|
29
docs/docs/integrations/providers/salute_devices.mdx
Normal file
29
docs/docs/integrations/providers/salute_devices.mdx
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
# Salute Devices
|
||||||
|
|
||||||
|
Salute Devices provides GigaChat LLM's models.
|
||||||
|
|
||||||
|
For more info how to get access to GigaChat [follow here](https://developers.sber.ru/docs/ru/gigachat/api/integration).
|
||||||
|
|
||||||
|
## Installation and Setup
|
||||||
|
|
||||||
|
GigaChat package can be installed via pip from PyPI:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install gigachat
|
||||||
|
```
|
||||||
|
|
||||||
|
## LLMs
|
||||||
|
|
||||||
|
See a [usage example](/docs/integrations/llms/gigachat).
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langchain.llms import GigaChat
|
||||||
|
```
|
||||||
|
|
||||||
|
## Chat models
|
||||||
|
|
||||||
|
See a [usage example](/docs/integrations/chat/gigachat).
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langchain.chat_models import GigaChat
|
||||||
|
```
|
@ -28,6 +28,7 @@ from langchain.chat_models.ernie import ErnieBotChat
|
|||||||
from langchain.chat_models.everlyai import ChatEverlyAI
|
from langchain.chat_models.everlyai import ChatEverlyAI
|
||||||
from langchain.chat_models.fake import FakeListChatModel
|
from langchain.chat_models.fake import FakeListChatModel
|
||||||
from langchain.chat_models.fireworks import ChatFireworks
|
from langchain.chat_models.fireworks import ChatFireworks
|
||||||
|
from langchain.chat_models.gigachat import GigaChat
|
||||||
from langchain.chat_models.google_palm import ChatGooglePalm
|
from langchain.chat_models.google_palm import ChatGooglePalm
|
||||||
from langchain.chat_models.human import HumanInputChatModel
|
from langchain.chat_models.human import HumanInputChatModel
|
||||||
from langchain.chat_models.hunyuan import ChatHunyuan
|
from langchain.chat_models.hunyuan import ChatHunyuan
|
||||||
@ -71,4 +72,5 @@ __all__ = [
|
|||||||
"ChatYandexGPT",
|
"ChatYandexGPT",
|
||||||
"ChatBaichuan",
|
"ChatBaichuan",
|
||||||
"ChatHunyuan",
|
"ChatHunyuan",
|
||||||
|
"GigaChat",
|
||||||
]
|
]
|
||||||
|
179
libs/langchain/langchain/chat_models/gigachat.py
Normal file
179
libs/langchain/langchain/chat_models/gigachat.py
Normal file
@ -0,0 +1,179 @@
|
|||||||
|
import logging
|
||||||
|
from typing import Any, AsyncIterator, Iterator, List, Optional
|
||||||
|
|
||||||
|
from langchain.callbacks.manager import (
|
||||||
|
AsyncCallbackManagerForLLMRun,
|
||||||
|
CallbackManagerForLLMRun,
|
||||||
|
)
|
||||||
|
from langchain.chat_models.base import (
|
||||||
|
BaseChatModel,
|
||||||
|
_agenerate_from_stream,
|
||||||
|
_generate_from_stream,
|
||||||
|
)
|
||||||
|
from langchain.llms.gigachat import _BaseGigaChat
|
||||||
|
from langchain.schema import ChatResult
|
||||||
|
from langchain.schema.messages import (
|
||||||
|
AIMessage,
|
||||||
|
AIMessageChunk,
|
||||||
|
BaseMessage,
|
||||||
|
ChatMessage,
|
||||||
|
HumanMessage,
|
||||||
|
SystemMessage,
|
||||||
|
)
|
||||||
|
from langchain.schema.output import ChatGeneration, ChatGenerationChunk
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def _convert_dict_to_message(message: Any) -> BaseMessage:
|
||||||
|
from gigachat.models import MessagesRole
|
||||||
|
|
||||||
|
if message.role == MessagesRole.SYSTEM:
|
||||||
|
return SystemMessage(content=message.content)
|
||||||
|
elif message.role == MessagesRole.USER:
|
||||||
|
return HumanMessage(content=message.content)
|
||||||
|
elif message.role == MessagesRole.ASSISTANT:
|
||||||
|
return AIMessage(content=message.content)
|
||||||
|
else:
|
||||||
|
raise TypeError(f"Got unknown role {message.role} {message}")
|
||||||
|
|
||||||
|
|
||||||
|
def _convert_message_to_dict(message: BaseMessage) -> Any:
|
||||||
|
from gigachat.models import Messages, MessagesRole
|
||||||
|
|
||||||
|
if isinstance(message, SystemMessage):
|
||||||
|
return Messages(role=MessagesRole.SYSTEM, content=message.content)
|
||||||
|
elif isinstance(message, HumanMessage):
|
||||||
|
return Messages(role=MessagesRole.USER, content=message.content)
|
||||||
|
elif isinstance(message, AIMessage):
|
||||||
|
return Messages(role=MessagesRole.ASSISTANT, content=message.content)
|
||||||
|
elif isinstance(message, ChatMessage):
|
||||||
|
return Messages(role=MessagesRole(message.role), content=message.content)
|
||||||
|
else:
|
||||||
|
raise TypeError(f"Got unknown type {message}")
|
||||||
|
|
||||||
|
|
||||||
|
class GigaChat(_BaseGigaChat, BaseChatModel):
|
||||||
|
"""`GigaChat` large language models API.
|
||||||
|
|
||||||
|
To use, you should pass login and password to access GigaChat API or use token.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain.chat_models import GigaChat
|
||||||
|
giga = GigaChat(credentials=..., verify_ssl_certs=False)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def _build_payload(self, messages: List[BaseMessage]) -> Any:
|
||||||
|
from gigachat.models import Chat
|
||||||
|
|
||||||
|
payload = Chat(
|
||||||
|
messages=[_convert_message_to_dict(m) for m in messages],
|
||||||
|
profanity_check=self.profanity,
|
||||||
|
)
|
||||||
|
if self.temperature is not None:
|
||||||
|
payload.temperature = self.temperature
|
||||||
|
if self.max_tokens is not None:
|
||||||
|
payload.max_tokens = self.max_tokens
|
||||||
|
|
||||||
|
if self.verbose:
|
||||||
|
logger.info("Giga request: %s", payload.dict())
|
||||||
|
|
||||||
|
return payload
|
||||||
|
|
||||||
|
def _create_chat_result(self, response: Any) -> ChatResult:
|
||||||
|
generations = []
|
||||||
|
for res in response.choices:
|
||||||
|
message = _convert_dict_to_message(res.message)
|
||||||
|
finish_reason = res.finish_reason
|
||||||
|
gen = ChatGeneration(
|
||||||
|
message=message,
|
||||||
|
generation_info={"finish_reason": finish_reason},
|
||||||
|
)
|
||||||
|
generations.append(gen)
|
||||||
|
if finish_reason != "stop":
|
||||||
|
logger.warning(
|
||||||
|
"Giga generation stopped with reason: %s",
|
||||||
|
finish_reason,
|
||||||
|
)
|
||||||
|
if self.verbose:
|
||||||
|
logger.info("Giga response: %s", message.content)
|
||||||
|
llm_output = {"token_usage": response.usage, "model_name": response.model}
|
||||||
|
return ChatResult(generations=generations, llm_output=llm_output)
|
||||||
|
|
||||||
|
def _generate(
|
||||||
|
self,
|
||||||
|
messages: List[BaseMessage],
|
||||||
|
stop: Optional[List[str]] = None,
|
||||||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||||
|
stream: Optional[bool] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> ChatResult:
|
||||||
|
should_stream = stream if stream is not None else self.streaming
|
||||||
|
if should_stream:
|
||||||
|
stream_iter = self._stream(
|
||||||
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
||||||
|
)
|
||||||
|
return _generate_from_stream(stream_iter)
|
||||||
|
|
||||||
|
payload = self._build_payload(messages)
|
||||||
|
response = self._client.chat(payload)
|
||||||
|
|
||||||
|
return self._create_chat_result(response)
|
||||||
|
|
||||||
|
async def _agenerate(
|
||||||
|
self,
|
||||||
|
messages: List[BaseMessage],
|
||||||
|
stop: Optional[List[str]] = None,
|
||||||
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||||
|
stream: Optional[bool] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> ChatResult:
|
||||||
|
should_stream = stream if stream is not None else self.streaming
|
||||||
|
if should_stream:
|
||||||
|
stream_iter = self._astream(
|
||||||
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
||||||
|
)
|
||||||
|
return await _agenerate_from_stream(stream_iter)
|
||||||
|
|
||||||
|
payload = self._build_payload(messages)
|
||||||
|
response = await self._client.achat(payload)
|
||||||
|
|
||||||
|
return self._create_chat_result(response)
|
||||||
|
|
||||||
|
def _stream(
|
||||||
|
self,
|
||||||
|
messages: List[BaseMessage],
|
||||||
|
stop: Optional[List[str]] = None,
|
||||||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> Iterator[ChatGenerationChunk]:
|
||||||
|
payload = self._build_payload(messages)
|
||||||
|
|
||||||
|
for chunk in self._client.stream(payload):
|
||||||
|
if chunk.choices:
|
||||||
|
content = chunk.choices[0].delta.content
|
||||||
|
yield ChatGenerationChunk(message=AIMessageChunk(content=content))
|
||||||
|
if run_manager:
|
||||||
|
run_manager.on_llm_new_token(content)
|
||||||
|
|
||||||
|
async def _astream(
|
||||||
|
self,
|
||||||
|
messages: List[BaseMessage],
|
||||||
|
stop: Optional[List[str]] = None,
|
||||||
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> AsyncIterator[ChatGenerationChunk]:
|
||||||
|
payload = self._build_payload(messages)
|
||||||
|
|
||||||
|
async for chunk in self._client.astream(payload):
|
||||||
|
if chunk.choices:
|
||||||
|
content = chunk.choices[0].delta.content
|
||||||
|
yield ChatGenerationChunk(message=AIMessageChunk(content=content))
|
||||||
|
if run_manager:
|
||||||
|
await run_manager.on_llm_new_token(content)
|
||||||
|
|
||||||
|
def get_num_tokens(self, text: str) -> int:
|
||||||
|
"""Count approximate number of tokens"""
|
||||||
|
return round(len(text) / 4.6)
|
@ -184,6 +184,12 @@ def _import_forefrontai() -> Any:
|
|||||||
return ForefrontAI
|
return ForefrontAI
|
||||||
|
|
||||||
|
|
||||||
|
def _import_gigachat() -> Any:
|
||||||
|
from langchain.llms.gigachat import GigaChat
|
||||||
|
|
||||||
|
return GigaChat
|
||||||
|
|
||||||
|
|
||||||
def _import_google_palm() -> Any:
|
def _import_google_palm() -> Any:
|
||||||
from langchain.llms.google_palm import GooglePalm
|
from langchain.llms.google_palm import GooglePalm
|
||||||
|
|
||||||
@ -547,6 +553,8 @@ def __getattr__(name: str) -> Any:
|
|||||||
return _import_fireworks()
|
return _import_fireworks()
|
||||||
elif name == "ForefrontAI":
|
elif name == "ForefrontAI":
|
||||||
return _import_forefrontai()
|
return _import_forefrontai()
|
||||||
|
elif name == "GigaChat":
|
||||||
|
return _import_gigachat()
|
||||||
elif name == "GooglePalm":
|
elif name == "GooglePalm":
|
||||||
return _import_google_palm()
|
return _import_google_palm()
|
||||||
elif name == "GooseAI":
|
elif name == "GooseAI":
|
||||||
@ -686,6 +694,7 @@ __all__ = [
|
|||||||
"FakeListLLM",
|
"FakeListLLM",
|
||||||
"Fireworks",
|
"Fireworks",
|
||||||
"ForefrontAI",
|
"ForefrontAI",
|
||||||
|
"GigaChat",
|
||||||
"GPT4All",
|
"GPT4All",
|
||||||
"GooglePalm",
|
"GooglePalm",
|
||||||
"GooseAI",
|
"GooseAI",
|
||||||
@ -767,6 +776,7 @@ def get_type_to_cls_dict() -> Dict[str, Callable[[], Type[BaseLLM]]]:
|
|||||||
"edenai": _import_edenai,
|
"edenai": _import_edenai,
|
||||||
"fake-list": _import_fake,
|
"fake-list": _import_fake,
|
||||||
"forefrontai": _import_forefrontai,
|
"forefrontai": _import_forefrontai,
|
||||||
|
"giga-chat-model": _import_gigachat,
|
||||||
"google_palm": _import_google_palm,
|
"google_palm": _import_google_palm,
|
||||||
"gooseai": _import_gooseai,
|
"gooseai": _import_gooseai,
|
||||||
"gradient": _import_gradient_ai,
|
"gradient": _import_gradient_ai,
|
||||||
|
259
libs/langchain/langchain/llms/gigachat.py
Normal file
259
libs/langchain/langchain/llms/gigachat.py
Normal file
@ -0,0 +1,259 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from functools import cached_property
|
||||||
|
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
|
||||||
|
|
||||||
|
from langchain.callbacks.manager import (
|
||||||
|
AsyncCallbackManagerForLLMRun,
|
||||||
|
CallbackManagerForLLMRun,
|
||||||
|
)
|
||||||
|
from langchain.llms.base import BaseLLM
|
||||||
|
from langchain.load.serializable import Serializable
|
||||||
|
from langchain.pydantic_v1 import root_validator
|
||||||
|
from langchain.schema.output import Generation, GenerationChunk, LLMResult
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class _BaseGigaChat(Serializable):
|
||||||
|
base_url: Optional[str] = None
|
||||||
|
""" Base API URL """
|
||||||
|
auth_url: Optional[str] = None
|
||||||
|
""" Auth URL """
|
||||||
|
credentials: Optional[str] = None
|
||||||
|
""" Auth Token """
|
||||||
|
scope: Optional[str] = None
|
||||||
|
""" Permission scope for access token """
|
||||||
|
|
||||||
|
access_token: Optional[str] = None
|
||||||
|
""" Access token for GigaChat """
|
||||||
|
|
||||||
|
model: Optional[str] = None
|
||||||
|
"""Model name to use."""
|
||||||
|
user: Optional[str] = None
|
||||||
|
""" Username for authenticate """
|
||||||
|
password: Optional[str] = None
|
||||||
|
""" Password for authenticate """
|
||||||
|
|
||||||
|
timeout: Optional[float] = None
|
||||||
|
""" Timeout for request """
|
||||||
|
verify_ssl_certs: Optional[bool] = None
|
||||||
|
""" Check certificates for all requests """
|
||||||
|
|
||||||
|
ca_bundle_file: Optional[str] = None
|
||||||
|
cert_file: Optional[str] = None
|
||||||
|
key_file: Optional[str] = None
|
||||||
|
key_file_password: Optional[str] = None
|
||||||
|
# Support for connection to GigaChat through SSL certificates
|
||||||
|
|
||||||
|
profanity: bool = True
|
||||||
|
""" Check for profanity """
|
||||||
|
streaming: bool = False
|
||||||
|
""" Whether to stream the results or not. """
|
||||||
|
temperature: Optional[float] = None
|
||||||
|
"""What sampling temperature to use."""
|
||||||
|
max_tokens: Optional[int] = None
|
||||||
|
""" Maximum number of tokens to generate """
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _llm_type(self) -> str:
|
||||||
|
return "giga-chat-model"
|
||||||
|
|
||||||
|
@property
|
||||||
|
def lc_secrets(self) -> Dict[str, str]:
|
||||||
|
return {
|
||||||
|
"credentials": "GIGACHAT_CREDENTIALS",
|
||||||
|
"access_token": "GIGACHAT_ACCESS_TOKEN",
|
||||||
|
"password": "GIGACHAT_PASSWORD",
|
||||||
|
"key_file_password": "GIGACHAT_KEY_FILE_PASSWORD",
|
||||||
|
}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def lc_serializable(self) -> bool:
|
||||||
|
return True
|
||||||
|
|
||||||
|
@cached_property
|
||||||
|
def _client(self) -> Any:
|
||||||
|
"""Returns GigaChat API client"""
|
||||||
|
import gigachat
|
||||||
|
|
||||||
|
return gigachat.GigaChat(
|
||||||
|
base_url=self.base_url,
|
||||||
|
auth_url=self.auth_url,
|
||||||
|
credentials=self.credentials,
|
||||||
|
scope=self.scope,
|
||||||
|
access_token=self.access_token,
|
||||||
|
model=self.model,
|
||||||
|
user=self.user,
|
||||||
|
password=self.password,
|
||||||
|
timeout=self.timeout,
|
||||||
|
verify_ssl_certs=self.verify_ssl_certs,
|
||||||
|
ca_bundle_file=self.ca_bundle_file,
|
||||||
|
cert_file=self.cert_file,
|
||||||
|
key_file=self.key_file,
|
||||||
|
key_file_password=self.key_file_password,
|
||||||
|
)
|
||||||
|
|
||||||
|
@root_validator()
|
||||||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||||||
|
"""Validate authenticate data in environment and python package is installed."""
|
||||||
|
try:
|
||||||
|
import gigachat # noqa: F401
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError(
|
||||||
|
"Could not import gigachat python package. "
|
||||||
|
"Please install it with `pip install gigachat`."
|
||||||
|
)
|
||||||
|
return values
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _identifying_params(self) -> Dict[str, Any]:
|
||||||
|
"""Get the identifying parameters."""
|
||||||
|
return {
|
||||||
|
"temperature": self.temperature,
|
||||||
|
"model": self.model,
|
||||||
|
"profanity": self.profanity,
|
||||||
|
"streaming": self.streaming,
|
||||||
|
"max_tokens": self.max_tokens,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class GigaChat(_BaseGigaChat, BaseLLM):
|
||||||
|
"""`GigaChat` large language models API.
|
||||||
|
|
||||||
|
To use, you should pass login and password to access GigaChat API or use token.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain.llms import GigaChat
|
||||||
|
giga = GigaChat(credentials=..., verify_ssl_certs=False)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def _build_payload(self, messages: List[str]) -> Dict[str, Any]:
|
||||||
|
payload: Dict[str, Any] = {
|
||||||
|
"messages": [{"role": "user", "content": m} for m in messages],
|
||||||
|
"profanity_check": self.profanity,
|
||||||
|
}
|
||||||
|
if self.temperature is not None:
|
||||||
|
payload["temperature"] = self.temperature
|
||||||
|
if self.max_tokens is not None:
|
||||||
|
payload["max_tokens"] = self.max_tokens
|
||||||
|
if self.model:
|
||||||
|
payload["model"] = self.model
|
||||||
|
|
||||||
|
if self.verbose:
|
||||||
|
logger.info("Giga request: %s", payload)
|
||||||
|
|
||||||
|
return payload
|
||||||
|
|
||||||
|
def _create_llm_result(self, response: Any) -> LLMResult:
|
||||||
|
generations = []
|
||||||
|
for res in response.choices:
|
||||||
|
finish_reason = res.finish_reason
|
||||||
|
gen = Generation(
|
||||||
|
text=res.message.content,
|
||||||
|
generation_info={"finish_reason": finish_reason},
|
||||||
|
)
|
||||||
|
generations.append([gen])
|
||||||
|
if finish_reason != "stop":
|
||||||
|
logger.warning(
|
||||||
|
"Giga generation stopped with reason: %s",
|
||||||
|
finish_reason,
|
||||||
|
)
|
||||||
|
if self.verbose:
|
||||||
|
logger.info("Giga response: %s", res.message.content)
|
||||||
|
token_usage = response.usage
|
||||||
|
llm_output = {"token_usage": token_usage, "model_name": response.model}
|
||||||
|
return LLMResult(generations=generations, llm_output=llm_output)
|
||||||
|
|
||||||
|
def _generate(
|
||||||
|
self,
|
||||||
|
prompts: List[str],
|
||||||
|
stop: Optional[List[str]] = None,
|
||||||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||||
|
stream: Optional[bool] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> LLMResult:
|
||||||
|
should_stream = stream if stream is not None else self.streaming
|
||||||
|
if should_stream:
|
||||||
|
generation: Optional[GenerationChunk] = None
|
||||||
|
stream_iter = self._stream(
|
||||||
|
prompts[0], stop=stop, run_manager=run_manager, **kwargs
|
||||||
|
)
|
||||||
|
for chunk in stream_iter:
|
||||||
|
if generation is None:
|
||||||
|
generation = chunk
|
||||||
|
else:
|
||||||
|
generation += chunk
|
||||||
|
assert generation is not None
|
||||||
|
return LLMResult(generations=[[generation]])
|
||||||
|
|
||||||
|
payload = self._build_payload(prompts)
|
||||||
|
response = self._client.chat(payload)
|
||||||
|
|
||||||
|
return self._create_llm_result(response)
|
||||||
|
|
||||||
|
async def _agenerate(
|
||||||
|
self,
|
||||||
|
prompts: List[str],
|
||||||
|
stop: Optional[List[str]] = None,
|
||||||
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||||
|
stream: Optional[bool] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> LLMResult:
|
||||||
|
should_stream = stream if stream is not None else self.streaming
|
||||||
|
if should_stream:
|
||||||
|
generation: Optional[GenerationChunk] = None
|
||||||
|
stream_iter = self._astream(
|
||||||
|
prompts[0], stop=stop, run_manager=run_manager, **kwargs
|
||||||
|
)
|
||||||
|
async for chunk in stream_iter:
|
||||||
|
if generation is None:
|
||||||
|
generation = chunk
|
||||||
|
else:
|
||||||
|
generation += chunk
|
||||||
|
assert generation is not None
|
||||||
|
return LLMResult(generations=[[generation]])
|
||||||
|
|
||||||
|
payload = self._build_payload(prompts)
|
||||||
|
response = await self._client.achat(payload)
|
||||||
|
|
||||||
|
return self._create_llm_result(response)
|
||||||
|
|
||||||
|
def _stream(
|
||||||
|
self,
|
||||||
|
prompt: str,
|
||||||
|
stop: Optional[List[str]] = None,
|
||||||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> Iterator[GenerationChunk]:
|
||||||
|
payload = self._build_payload([prompt])
|
||||||
|
|
||||||
|
for chunk in self._client.stream(payload):
|
||||||
|
if chunk.choices:
|
||||||
|
content = chunk.choices[0].delta.content
|
||||||
|
yield GenerationChunk(text=content)
|
||||||
|
if run_manager:
|
||||||
|
run_manager.on_llm_new_token(content)
|
||||||
|
|
||||||
|
async def _astream(
|
||||||
|
self,
|
||||||
|
prompt: str,
|
||||||
|
stop: Optional[List[str]] = None,
|
||||||
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> AsyncIterator[GenerationChunk]:
|
||||||
|
payload = self._build_payload([prompt])
|
||||||
|
|
||||||
|
async for chunk in self._client.astream(payload):
|
||||||
|
if chunk.choices:
|
||||||
|
content = chunk.choices[0].delta.content
|
||||||
|
yield GenerationChunk(text=content)
|
||||||
|
if run_manager:
|
||||||
|
await run_manager.on_llm_new_token(content)
|
||||||
|
|
||||||
|
def get_num_tokens(self, text: str) -> int:
|
||||||
|
"""Count approximate number of tokens"""
|
||||||
|
return round(len(text) / 4.6)
|
Loading…
Reference in New Issue
Block a user