docs: anthropic tool docstring (#20091)

This commit is contained in:
Bagatur 2024-04-05 14:50:40 -07:00 committed by GitHub
parent 28dfde2cb2
commit 46f580d42d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -438,7 +438,31 @@ class ChatAnthropic(BaseChatModel):
models, callables, and BaseTools will be automatically converted to
their schema dictionary representation.
**kwargs: Any additional parameters to bind.
"""
Example:
.. code-block:: python
from langchain_anthropic import ChatAnthropic
from langchain_core.pydantic_v1 import BaseModel, Field
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
llm_with_tools = llm.bind_tools([GetWeather])
llm_with_tools.invoke("what is the weather like in San Francisco",)
# -> AIMessage(
# content=[
# {'text': '<thinking>\nBased on the user\'s question, the relevant function to call is GetWeather, which requires the "location" parameter.\n\nThe user has directly specified the location as "San Francisco". Since San Francisco is a well known city, I can reasonably infer they mean San Francisco, CA without needing the state specified.\n\nAll the required parameters are provided, so I can proceed with the API call.\n</thinking>', 'type': 'text'},
# {'text': None, 'type': 'tool_use', 'id': 'toolu_01SCgExKzQ7eqSkMHfygvYuu', 'name': 'GetWeather', 'input': {'location': 'San Francisco, CA'}}
# ],
# response_metadata={'id': 'msg_01GM3zQtoFv8jGQMW7abLnhi', 'model': 'claude-3-opus-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 487, 'output_tokens': 145}},
# id='run-87b1331e-9251-4a68-acef-f0a018b639cc-0'
# )
""" # noqa: E501
formatted_tools = [convert_to_anthropic_tool(tool) for tool in tools]
return self.bind(tools=formatted_tools, **kwargs)
@ -450,6 +474,102 @@ class ChatAnthropic(BaseChatModel):
include_raw: bool = False,
**kwargs: Any,
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
"""Model wrapper that returns outputs formatted to match the given schema.
Args:
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
then the model output will be an object of that class. If a dict then
the model output will be a dict. With a Pydantic class the returned
attributes will be validated, whereas with a dict they will not be.
include_raw: If False then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If True
then both the raw model response (a BaseMessage) and the parsed model
response will be returned. If an error occurs during output parsing it
will be caught and returned as well. The final output is always a dict
with keys "raw", "parsed", and "parsing_error".
Returns:
A Runnable that takes any ChatModel input. The output type depends on
include_raw and schema.
If include_raw is True then output is a dict with keys:
raw: BaseMessage,
parsed: Optional[_DictOrPydantic],
parsing_error: Optional[BaseException],
If include_raw is False and schema is a Dict then the runnable outputs a Dict.
If include_raw is False and schema is a Type[BaseModel] then the runnable
outputs a BaseModel.
Example: Pydantic schema (include_raw=False):
.. code-block:: python
from langchain_anthropic import ChatAnthropic
from langchain_core.pydantic_v1 import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
Example: Pydantic schema (include_raw=True):
.. code-block:: python
from langchain_anthropic import ChatAnthropic
from langchain_core.pydantic_v1 import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
Example: Dict schema (include_raw=False):
.. code-block:: python
from langchain_anthropic import ChatAnthropic
schema = {
"name": "AnswerWithJustification",
"description": "An answer to the user question along with justification for the answer.",
"input_schema": {
"type": "object",
"properties": {
"answer": {"type": "string"},
"justification": {"type": "string"},
},
"required": ["answer", "justification"]
}
}
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
structured_llm = llm.with_structured_output(schema)
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
""" # noqa: E501
llm = self.bind_tools([schema])
if isinstance(schema, type) and issubclass(schema, BaseModel):
output_parser = ToolsOutputParser(