mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-16 09:48:04 +00:00
docs[patch]: Add ReAct agent conceptual guide, improve search (#23554)
@baskaryan
This commit is contained in:
parent
672fcbb8dc
commit
47f69fe0d8
@ -550,6 +550,28 @@ If you are still using AgentExecutor, do not fear: we still have a guide on [how
|
||||
It is recommended, however, that you start to transition to LangGraph.
|
||||
In order to assist in this we have put together a [transition guide on how to do so](/docs/how_to/migrate_agent).
|
||||
|
||||
#### ReAct agents
|
||||
<span data-heading-keywords="react,react agent"></span>
|
||||
|
||||
One popular architecture for building agents is [**ReAct**](https://arxiv.org/abs/2210.03629).
|
||||
ReAct combines reasoning and acting in an iterative process - in fact the name "ReAct" stands for "Reason" and "Act".
|
||||
|
||||
The general flow looks like this:
|
||||
|
||||
- The model will "think" about what step to take in response to an input and any previous observations.
|
||||
- The model will then choose an action from available tools (or choose to respond to the user).
|
||||
- The model will generate arguments to that tool.
|
||||
- The agent runtime (executor) will parse out the chosen tool and call it with the generated arguments.
|
||||
- The executor will return the results of the tool call back to the model as an observation.
|
||||
- This process repeats until the agent chooses to respond.
|
||||
|
||||
There are general prompting based implementations that do not require any model-specific features, but the most
|
||||
reliable implementations use features like [tool calling](/docs/how_to/tool_calling/) to reliably format outputs
|
||||
and reduce variance.
|
||||
|
||||
Please see the [LangGraph documentation](https://langchain-ai.github.io/langgraph/) for more information,
|
||||
or [this how-to guide](/docs/how_to/migrate_agent/) for specific information on migrating to LangGraph.
|
||||
|
||||
### Callbacks
|
||||
|
||||
LangChain provides a callbacks system that allows you to hook into the various stages of your LLM application. This is useful for logging, monitoring, streaming, and other tasks.
|
||||
|
@ -1,5 +1,19 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "adc7ee09",
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "raw"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"---\n",
|
||||
"keywords: [create_react_agent, create_react_agent()]\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "457cdc67-1893-4653-8b0c-b185a5947e74",
|
||||
@ -9,7 +23,7 @@
|
||||
"\n",
|
||||
"Here we focus on how to move from legacy LangChain agents to LangGraph agents.\n",
|
||||
"LangChain agents (the [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor) in particular) have multiple configuration parameters.\n",
|
||||
"In this notebook we will show how those parameters map to the LangGraph [react agent executor](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent).\n",
|
||||
"In this notebook we will show how those parameters map to the LangGraph react agent executor using the [create_react_agent](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) prebuilt helper method.\n",
|
||||
"\n",
|
||||
"#### Prerequisites\n",
|
||||
"\n",
|
||||
|
@ -1,5 +1,18 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "raw"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"---\n",
|
||||
"keywords: [tool calling, tool call]\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
Loading…
Reference in New Issue
Block a user