docs, community[patch], experimental[patch], langchain[patch], cli[pa… (#15412)

…tch]: import models from community

ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
This commit is contained in:
Bagatur
2024-01-02 15:32:16 -05:00
committed by GitHub
parent 9cbf14dec2
commit 480626dc99
841 changed files with 1636 additions and 1598 deletions

View File

@@ -9,7 +9,7 @@ To set it up, follow the instructions on https://database.guide/2-sample-databas
```python
from langchain.llms import OpenAI
from langchain_community.llms import OpenAI
from langchain.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
```
@@ -200,7 +200,7 @@ result["intermediate_steps"]
How to add memory to a SQLDatabaseChain:
```python
from langchain.llms import OpenAI
from langchain_community.llms import OpenAI
from langchain.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
```
@@ -647,7 +647,7 @@ Sometimes you may not have the luxury of using OpenAI or other service-hosted la
import logging
import torch
from transformers import AutoTokenizer, GPT2TokenizerFast, pipeline, AutoModelForSeq2SeqLM, AutoModelForCausalLM
from langchain.llms import HuggingFacePipeline
from langchain_community.llms import HuggingFacePipeline
# Note: This model requires a large GPU, e.g. an 80GB A100. See documentation for other ways to run private non-OpenAI models.
model_id = "google/flan-ul2"
@@ -994,7 +994,7 @@ Now that you have some examples (with manually corrected output SQL), you can do
```python
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
from langchain.chains.sql_database.prompt import _sqlite_prompt, PROMPT_SUFFIX
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.prompts.example_selector.semantic_similarity import SemanticSimilarityExampleSelector
from langchain.vectorstores import Chroma