patch: remove usage of llm, chat model __call__ (#20788)

- `llm(prompt)` -> `llm.invoke(prompt)`
- `llm(prompt=prompt` -> `llm.invoke(prompt)` (same with `messages=`)
- `llm(prompt, callbacks=callbacks)` -> `llm.invoke(prompt,
config={"callbacks": callbacks})`
- `llm(prompt, **kwargs)` -> `llm.invoke(prompt, **kwargs)`
This commit is contained in:
ccurme
2024-04-24 19:39:23 -04:00
committed by GitHub
parent 9b7fb381a4
commit 481d3855dc
181 changed files with 395 additions and 403 deletions

View File

@@ -194,7 +194,7 @@
"llm = OpenAI(\n",
" temperature=0, callbacks=[LabelStudioCallbackHandler(project_name=\"My Project\")]\n",
")\n",
"print(llm(\"Tell me a joke\"))"
"print(llm.invoke(\"Tell me a joke\"))"
]
},
{
@@ -270,7 +270,7 @@
" )\n",
" ]\n",
")\n",
"llm_results = chat_llm(\n",
"llm_results = chat_llm.invoke(\n",
" [\n",
" SystemMessage(content=\"Always use a lot of emojis\"),\n",
" HumanMessage(content=\"Tell me a joke\"),\n",

View File

@@ -107,7 +107,7 @@ User tracking allows you to identify your users, track their cost, conversations
from langchain_community.callbacks.llmonitor_callback import LLMonitorCallbackHandler, identify
with identify("user-123"):
llm("Tell me a joke")
llm.invoke("Tell me a joke")
with identify("user-456", user_props={"email": "user456@test.com"}):
agen.run("Who is Leo DiCaprio's girlfriend?")

View File

@@ -103,7 +103,7 @@
" temperature=0,\n",
" callbacks=[PromptLayerCallbackHandler(pl_tags=[\"chatopenai\"])],\n",
")\n",
"llm_results = chat_llm(\n",
"llm_results = chat_llm.invoke(\n",
" [\n",
" HumanMessage(content=\"What comes after 1,2,3 ?\"),\n",
" HumanMessage(content=\"Tell me another joke?\"),\n",
@@ -129,10 +129,11 @@
"from langchain_community.llms import GPT4All\n",
"\n",
"model = GPT4All(model=\"./models/gpt4all-model.bin\", n_ctx=512, n_threads=8)\n",
"callbacks = [PromptLayerCallbackHandler(pl_tags=[\"langchain\", \"gpt4all\"])]\n",
"\n",
"response = model(\n",
"response = model.invoke(\n",
" \"Once upon a time, \",\n",
" callbacks=[PromptLayerCallbackHandler(pl_tags=[\"langchain\", \"gpt4all\"])],\n",
" config={\"callbacks\": callbacks},\n",
")"
]
},
@@ -181,7 +182,7 @@
")\n",
"\n",
"example_prompt = promptlayer.prompts.get(\"example\", version=1, langchain=True)\n",
"openai_llm(example_prompt.format(product=\"toasters\"))"
"openai_llm.invoke(example_prompt.format(product=\"toasters\"))"
]
},
{

View File

@@ -315,7 +315,7 @@
}
],
"source": [
"chat_res = chat_llm(\n",
"chat_res = chat_llm.invoke(\n",
" [\n",
" SystemMessage(content=\"Every answer of yours must be about OpenAI.\"),\n",
" HumanMessage(content=\"Tell me a joke\"),\n",

View File

@@ -72,7 +72,7 @@
"metadata": {},
"outputs": [],
"source": [
"output = chat([HumanMessage(content=\"write a funny joke\")])\n",
"output = chat.invoke([HumanMessage(content=\"write a funny joke\")])\n",
"print(\"output:\", output)"
]
},
@@ -90,7 +90,7 @@
"outputs": [],
"source": [
"kwargs = {\"temperature\": 0.8, \"top_p\": 0.8, \"top_k\": 5}\n",
"output = chat([HumanMessage(content=\"write a funny joke\")], **kwargs)\n",
"output = chat.invoke([HumanMessage(content=\"write a funny joke\")], **kwargs)\n",
"print(\"output:\", output)"
]
},

View File

@@ -62,7 +62,7 @@
"messages = [system_message, user_message]\n",
"\n",
"# chat with wasm-chat service\n",
"response = chat(messages)\n",
"response = chat.invoke(messages)\n",
"\n",
"print(f\"[Bot] {response.content}\")"
]

View File

@@ -119,7 +119,7 @@
"metadata": {},
"outputs": [],
"source": [
"response = chat(messages)\n",
"response = chat.invoke(messages)\n",
"print(response.content) # Displays the AI-generated poem"
]
},

View File

@@ -147,7 +147,7 @@
"\n",
"@ray.remote(num_cpus=0.1)\n",
"def send_query(llm, prompt):\n",
" resp = llm(prompt)\n",
" resp = llm.invoke(prompt)\n",
" return resp\n",
"\n",
"\n",

View File

@@ -96,7 +96,7 @@
")\n",
"\n",
"print(\n",
" llm(\n",
" llm.invoke(\n",
" '<|system|>Enter RP mode. You are Ayumu \"Osaka\" Kasuga.<|user|>Hey Osaka. Tell me about yourself.<|model|>'\n",
" )\n",
")"

View File

@@ -45,7 +45,7 @@
"# Load the model\n",
"llm = BaichuanLLM()\n",
"\n",
"res = llm(\"What's your name?\")\n",
"res = llm.invoke(\"What's your name?\")\n",
"print(res)"
]
},

View File

@@ -80,7 +80,7 @@
"os.environ[\"QIANFAN_SK\"] = \"your_sk\"\n",
"\n",
"llm = QianfanLLMEndpoint(streaming=True)\n",
"res = llm(\"hi\")\n",
"res = llm.invoke(\"hi\")\n",
"print(res)"
]
},
@@ -185,7 +185,7 @@
" model=\"ERNIE-Bot-turbo\",\n",
" endpoint=\"eb-instant\",\n",
")\n",
"res = llm(\"hi\")"
"res = llm.invoke(\"hi\")"
]
},
{

View File

@@ -62,7 +62,7 @@
" } \"\"\"\n",
"\n",
"multi_response_llm = NIBittensorLLM(top_responses=10)\n",
"multi_resp = multi_response_llm(\"What is Neural Network Feeding Mechanism?\")\n",
"multi_resp = multi_response_llm.invoke(\"What is Neural Network Feeding Mechanism?\")\n",
"json_multi_resp = json.loads(multi_resp)\n",
"pprint(json_multi_resp)"
]

View File

@@ -62,7 +62,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(llm(\"AI is going to\"))"
"print(llm.invoke(\"AI is going to\"))"
]
},
{
@@ -85,7 +85,7 @@
" model=\"marella/gpt-2-ggml\", callbacks=[StreamingStdOutCallbackHandler()]\n",
")\n",
"\n",
"response = llm(\"AI is going to\")"
"response = llm.invoke(\"AI is going to\")"
]
},
{

View File

@@ -97,7 +97,7 @@
],
"source": [
"print(\n",
" llm(\n",
" llm.invoke(\n",
" \"He presented me with plausible evidence for the existence of unicorns: \",\n",
" max_length=256,\n",
" sampling_topk=50,\n",

View File

@@ -32,7 +32,7 @@
" model=\"zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none\"\n",
")\n",
"\n",
"print(llm(\"def fib():\"))"
"print(llm.invoke(\"def fib():\"))"
]
},
{

View File

@@ -203,7 +203,7 @@
"User: Answer the following yes/no question by reasoning step by step. Can a dog drive a car?\n",
"Assistant:\n",
"\"\"\"\n",
"print(llm(prompt))"
"print(llm.invoke(prompt))"
]
},
{

View File

@@ -359,7 +359,7 @@
"}\n",
"message = HumanMessage(content=[text_message, image_message])\n",
"\n",
"output = llm([message])\n",
"output = llm.invoke([message])\n",
"print(output.content)"
]
},
@@ -432,7 +432,7 @@
"}\n",
"message = HumanMessage(content=[text_message, image_message])\n",
"\n",
"output = llm([message])\n",
"output = llm.invoke([message])\n",
"print(output.content)"
]
},
@@ -457,7 +457,7 @@
"outputs": [],
"source": [
"message2 = HumanMessage(content=\"And where the image is taken?\")\n",
"output2 = llm([message, output, message2])\n",
"output2 = llm.invoke([message, output, message2])\n",
"print(output2.content)"
]
},
@@ -486,7 +486,7 @@
"}\n",
"message = HumanMessage(content=[text_message, image_message])\n",
"\n",
"output = llm([message])\n",
"output = llm.invoke([message])\n",
"print(output.content)"
]
},

View File

@@ -57,7 +57,9 @@
},
"outputs": [],
"source": [
"response = llm(\"### Instruction:\\nWhat is the first book of the bible?\\n### Response:\")"
"response = llm.invoke(\n",
" \"### Instruction:\\nWhat is the first book of the bible?\\n### Response:\"\n",
")"
]
}
],

View File

@@ -90,7 +90,7 @@
"llm = Konko(model=\"mistralai/mistral-7b-v0.1\", temperature=0.1, max_tokens=128)\n",
"\n",
"input_ = \"\"\"You are a helpful assistant. Explain Big Bang Theory briefly.\"\"\"\n",
"print(llm(input_))"
"print(llm.invoke(input_))"
]
},
{

View File

@@ -1020,7 +1020,7 @@
"source": [
"%%time\n",
"\n",
"print(llm(\"Why is the Moon always showing the same side?\"))"
"print(llm.invoke(\"Why is the Moon always showing the same side?\"))"
]
},
{
@@ -1044,7 +1044,7 @@
"source": [
"%%time\n",
"\n",
"print(llm(\"Why is the Moon always showing the same side?\"))"
"print(llm.invoke(\"Why is the Moon always showing the same side?\"))"
]
},
{
@@ -1109,7 +1109,7 @@
"source": [
"%%time\n",
"\n",
"print(llm(\"Why is the Moon always showing the same side?\"))"
"print(llm.invoke(\"Why is the Moon always showing the same side?\"))"
]
},
{
@@ -1133,7 +1133,7 @@
"source": [
"%%time\n",
"\n",
"print(llm(\"How come we always see one face of the moon?\"))"
"print(llm.invoke(\"How come we always see one face of the moon?\"))"
]
},
{
@@ -1238,7 +1238,7 @@
"source": [
"%%time\n",
"\n",
"print(llm(\"Is a true fakery the same as a fake truth?\"))"
"print(llm.invoke(\"Is a true fakery the same as a fake truth?\"))"
]
},
{
@@ -1262,7 +1262,7 @@
"source": [
"%%time\n",
"\n",
"print(llm(\"Is a true fakery the same as a fake truth?\"))"
"print(llm.invoke(\"Is a true fakery the same as a fake truth?\"))"
]
},
{
@@ -1327,7 +1327,7 @@
"source": [
"%%time\n",
"\n",
"print(llm(\"Are there truths that are false?\"))"
"print(llm.invoke(\"Are there truths that are false?\"))"
]
},
{
@@ -1351,7 +1351,7 @@
"source": [
"%%time\n",
"\n",
"print(llm(\"Is is possible that something false can be also true?\"))"
"print(llm.invoke(\"Is is possible that something false can be also true?\"))"
]
},
{

View File

@@ -96,7 +96,7 @@
"metadata": {},
"outputs": [],
"source": [
"response = model(\"Can you recommend me a nice dry wine?\")\n",
"response = model.invoke(\"Can you recommend me a nice dry wine?\")\n",
"print(response)"
]
},
@@ -269,7 +269,7 @@
"metadata": {},
"outputs": [],
"source": [
"# response = model(\"Can you help categorize the following emails into positive, negative, and neutral?\")"
"# response = model.invoke(\"Can you help categorize the following emails into positive, negative, and neutral?\")"
]
}
],

View File

@@ -323,7 +323,7 @@
"User: Answer the following yes/no question by reasoning step by step. Can a dog drive a car?\n",
"Assistant:\n",
"\"\"\"\n",
"_ = llm(prompt)"
"_ = llm.invoke(prompt)"
]
},
{
@@ -376,13 +376,13 @@
"Assistant:\n",
"\"\"\"\n",
"start_time = time.perf_counter()\n",
"raw_output = llm(prompt) # raw output, no stop\n",
"raw_output = llm.invoke(prompt) # raw output, no stop\n",
"end_time = time.perf_counter()\n",
"print(f\"Raw output:\\n {raw_output}\")\n",
"print(f\"Raw output runtime: {end_time - start_time} seconds\")\n",
"\n",
"start_time = time.perf_counter()\n",
"stopped_output = llm(prompt, stop=[\"\\n\\n\"]) # stop on double newlines\n",
"stopped_output = llm.invoke(prompt, stop=[\"\\n\\n\"]) # stop on double newlines\n",
"end_time = time.perf_counter()\n",
"print(f\"Stopped output:\\n {stopped_output}\")\n",
"print(f\"Stopped output runtime: {end_time - start_time} seconds\")"

View File

@@ -65,7 +65,7 @@
"# Load the model\n",
"llm = SparkLLM()\n",
"\n",
"res = llm(\"What's your name?\")\n",
"res = llm.invoke(\"What's your name?\")\n",
"print(res)"
]
},

View File

@@ -23,7 +23,7 @@ It provides a unified interface for all models:
```python
llm = CTransformers(model='/path/to/ggml-gpt-2.bin', model_type='gpt2')
print(llm('AI is going to'))
print(llm.invoke('AI is going to'))
```
If you are getting `illegal instruction` error, try using `lib='avx'` or `lib='basic'`:

View File

@@ -22,7 +22,7 @@ It provides a unified interface for all models:
```python
llm = DeepSparse(model='zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none')
print(llm('def fib():'))
print(llm.invoke('def fib():'))
```
Additional parameters can be passed using the `config` parameter:

View File

@@ -83,7 +83,7 @@ def langchain_llm() -> str:
temperature=0.2,
callbacks=[FlyteCallbackHandler()],
)
return llm([HumanMessage(content="Tell me a joke")]).content
return llm.invoke([HumanMessage(content="Tell me a joke")]).content
```
### Chain

View File

@@ -27,7 +27,7 @@ from langchain_community.llms import GPT4All
model = GPT4All(model="./models/mistral-7b-openorca.Q4_0.gguf", n_threads=8)
# Generate text
response = model("Once upon a time, ")
response = model.invoke("Once upon a time, ")
```
You can also customize the generation parameters, such as n_predict, temp, top_p, top_k, and others.

View File

@@ -29,7 +29,7 @@ openai.api_base = "https://oai.hconeai.com/v1"
llm = OpenAI(temperature=0.9, headers={"Helicone-Cache-Enabled": "true"})
text = "What is a helicone?"
print(llm(text))
print(llm.invoke(text))
```
[Helicone caching docs](https://docs.helicone.ai/advanced-usage/caching)
@@ -47,7 +47,7 @@ llm = OpenAI(temperature=0.9, headers={
"Helicone-Property-App": "mobile",
})
text = "What is a helicone?"
print(llm(text))
print(llm.invoke(text))
```
[Helicone property docs](https://docs.helicone.ai/advanced-usage/custom-properties)

View File

@@ -44,7 +44,7 @@ See a usage [example](/docs/integrations/llms/konko).
from langchain.llms import Konko
llm = Konko(max_tokens=800, model='mistralai/Mistral-7B-v0.1')
prompt = "Generate a Product Description for Apple Iphone 15"
response = llm(prompt)
response = llm.invoke(prompt)
```
## Chat Models

View File

@@ -23,7 +23,7 @@ model = Predibase(
predibase_sdk_version=None, # optional parameter (defaults to the latest Predibase SDK version if omitted)
)
response = model("Can you recommend me a nice dry wine?")
response = model.invoke("Can you recommend me a nice dry wine?")
print(response)
```
@@ -44,7 +44,7 @@ model = Predibase(
adapter_version=1,
)
response = model("Can you recommend me a nice dry wine?")
response = model.invoke("Can you recommend me a nice dry wine?")
print(response)
```
@@ -64,6 +64,6 @@ model = Predibase(
adapter_id="predibase/e2e_nlg",
)
response = model("Can you recommend me a nice dry wine?")
response = model.invoke("Can you recommend me a nice dry wine?")
print(response)
```

View File

@@ -44,7 +44,7 @@ def generate_prompt(instruction, input=None):
model = RWKV(model="./models/RWKV-4-Raven-3B-v7-Eng-20230404-ctx4096.pth", strategy="cpu fp32", tokens_path="./rwkv/20B_tokenizer.json")
response = model(generate_prompt("Once upon a time, "))
response = model.invoke(generate_prompt("Once upon a time, "))
```
## Model File

View File

@@ -545,7 +545,7 @@
")\n",
"\n",
"_input = prompt.format_prompt(text=dataset[0][\"text\"])\n",
"output = llm(_input.to_string())\n",
"output = llm.invoke(_input.to_string())\n",
"\n",
"parsed = parser.parse(output)\n",
"parsed"