patch: remove usage of llm, chat model __call__ (#20788)

- `llm(prompt)` -> `llm.invoke(prompt)`
- `llm(prompt=prompt` -> `llm.invoke(prompt)` (same with `messages=`)
- `llm(prompt, callbacks=callbacks)` -> `llm.invoke(prompt,
config={"callbacks": callbacks})`
- `llm(prompt, **kwargs)` -> `llm.invoke(prompt, **kwargs)`
This commit is contained in:
ccurme
2024-04-24 19:39:23 -04:00
committed by GitHub
parent 9b7fb381a4
commit 481d3855dc
181 changed files with 395 additions and 403 deletions

View File

@@ -18,7 +18,7 @@ from tests.unit_tests.callbacks.fake_callback_handler import (
def test_openai_call() -> None:
"""Test valid call to openai."""
llm = OpenAI()
output = llm("Say something nice:")
output = llm.invoke("Say something nice:")
assert isinstance(output, str)
@@ -34,9 +34,9 @@ def test_openai_stop_valid() -> None:
"""Test openai stop logic on valid configuration."""
query = "write an ordered list of five items"
first_llm = OpenAI(stop="3", temperature=0)
first_output = first_llm(query)
first_output = first_llm.invoke(query)
second_llm = OpenAI(temperature=0)
second_output = second_llm(query, stop=["3"])
second_output = second_llm.invoke(query, stop=["3"])
# Because it stops on new lines, shouldn't return anything
assert first_output == second_output
@@ -45,7 +45,7 @@ def test_openai_stop_error() -> None:
"""Test openai stop logic on bad configuration."""
llm = OpenAI(stop="3", temperature=0)
with pytest.raises(ValueError):
llm("write an ordered list of five items", stop=["\n"])
llm.invoke("write an ordered list of five items", stop=["\n"])
def test_saving_loading_llm(tmp_path: Path) -> None:
@@ -158,7 +158,7 @@ def test_openai_streaming_multiple_prompts_error() -> None:
def test_openai_streaming_call() -> None:
"""Test valid call to openai."""
llm = OpenAI(max_tokens=10, streaming=True)
output = llm("Say foo:")
output = llm.invoke("Say foo:")
assert isinstance(output, str)
@@ -173,7 +173,7 @@ def test_openai_streaming_callback() -> None:
callback_manager=callback_manager,
verbose=True,
)
llm("Write me a sentence with 100 words.")
llm.invoke("Write me a sentence with 100 words.")
assert callback_handler.llm_streams == 10