mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-30 17:05:44 +00:00
docs: poetry publish (#28275)
This commit is contained in:
parent
f173b72e35
commit
49254cde70
@ -6,4 +6,5 @@
|
||||
## Integrations
|
||||
|
||||
- [**Start Here**](integrations/index.mdx): Help us integrate with your favorite vendors and tools.
|
||||
- [**Package**](integrations/package): Publish an integration package to PyPi
|
||||
- [**Standard Tests**](integrations/standard_tests): Ensure your integration passes an expected set of tests.
|
||||
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
pagination_next: null
|
||||
pagination_prev: null
|
||||
---
|
||||
## How to add a community integration (not recommended)
|
||||
|
||||
:::danger
|
||||
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
pagination_next: null
|
||||
pagination_prev: null
|
||||
---
|
||||
|
||||
# How to publish an integration package from a template
|
||||
|
||||
:::danger
|
||||
|
@ -1,5 +1,5 @@
|
||||
---
|
||||
sidebar_position: 5
|
||||
pagination_next: contributing/how_to/integrations/package
|
||||
---
|
||||
|
||||
# Contribute Integrations
|
||||
@ -66,7 +66,7 @@ that will render on this site (https://python.langchain.com/).
|
||||
As a prerequisite to adding your integration to our documentation, you must:
|
||||
|
||||
1. Confirm that your integration is in the [list of components](#components-to-integrate) we are currently accepting.
|
||||
2. Ensure that your integration is in a separate package that can be installed with `pip install <your-package>`.
|
||||
2. [Publish your package to PyPi](./package.mdx) and make the repo public.
|
||||
3. [Implement the standard tests](/docs/contributing/how_to/integrations/standard_tests) for your integration and successfully run them.
|
||||
3. Write documentation for your integration in the `docs/docs/integrations/<component_type>` directory of the LangChain monorepo.
|
||||
4. Add a provider page for your integration in the `docs/docs/integrations/providers` directory of the LangChain monorepo.
|
||||
|
229
docs/docs/contributing/how_to/integrations/package.mdx
Normal file
229
docs/docs/contributing/how_to/integrations/package.mdx
Normal file
@ -0,0 +1,229 @@
|
||||
---
|
||||
pagination_next: contributing/how_to/integrations/standard_tests
|
||||
pagination_prev: contributing/how_to/integrations/index
|
||||
---
|
||||
# How to bootstrap a new integration package
|
||||
|
||||
This guide walks through the process of publishing a new LangChain integration
|
||||
package to PyPi.
|
||||
|
||||
Integration packages are just Python packages that can be installed with `pip install <your-package>`,
|
||||
which contain classes that are compatible with LangChain's core interfaces.
|
||||
|
||||
In this guide, we will be using [Poetry](https://python-poetry.org/) for
|
||||
dependency management and packaging, and you're welcome to use any other tools you prefer.
|
||||
|
||||
## **Prerequisites**
|
||||
|
||||
- [GitHub](https://github.com) account
|
||||
- [PyPi](https://pypi.org/) account
|
||||
|
||||
## Boostrapping a new Python package with Poetry
|
||||
|
||||
First, install Poetry:
|
||||
|
||||
```bash
|
||||
pip install poetry
|
||||
```
|
||||
|
||||
Next, come up with a name for your package. For this guide, we'll use `langchain-parrot-link`.
|
||||
You can confirm that the name is available on PyPi by searching for it on the [PyPi website](https://pypi.org/).
|
||||
|
||||
Next, create your new Python package with Poetry:
|
||||
|
||||
```bash
|
||||
poetry new langchain-parrot-link
|
||||
```
|
||||
|
||||
Add main dependencies using Poetry, which will add them to your `pyproject.toml` file:
|
||||
|
||||
```bash
|
||||
poetry add langchain-core
|
||||
```
|
||||
|
||||
We will also add some `test` dependencies in a separate poetry dependency group. If
|
||||
you are not using Poetry, we recommend adding these in a way that won't package them
|
||||
with your published package, or just installing them separately when you run tests.
|
||||
|
||||
`langchain-tests` will provide the [standard tests](../standard_tests) we will use later.
|
||||
We recommended pinning these to the latest version: <img src="https://img.shields.io/pypi/v/langchain-tests" style={{position:"relative",top:4,left:3}} />
|
||||
|
||||
Note: Replace `{latest version}` with the latest version of `langchain-tests` below.
|
||||
|
||||
```bash
|
||||
poetry add --group test pytest pytest-socket langchain-tests=={latest version}
|
||||
```
|
||||
|
||||
You're now ready to start writing your integration package!
|
||||
|
||||
## Writing your integration
|
||||
|
||||
Let's say you're building a simple integration package that provides a `ChatParrotLink`
|
||||
chat model integration for LangChain. Here's a simple example of what your project
|
||||
structure might look like:
|
||||
|
||||
```plaintext
|
||||
langchain-parrot-link/
|
||||
├── langchain_parrot_link/
|
||||
│ ├── __init__.py
|
||||
│ └── chat_models.py
|
||||
├── tests/
|
||||
│ ├── __init__.py
|
||||
│ └── test_chat_models.py
|
||||
├── pyproject.toml
|
||||
└── README.md
|
||||
```
|
||||
|
||||
All of these files should already exist from step 1, except for
|
||||
`chat_models.py` and `test_chat_models.py`! We will implement `test_chat_models.py`
|
||||
later, following the [standard tests](../standard_tests) guide.
|
||||
|
||||
To implement `chat_models.py`, let's copy the implementation from our
|
||||
[Custom Chat Model Guide](../../../../how_to/custom_chat_model).
|
||||
|
||||
<details>
|
||||
<summary>chat_models.py</summary>
|
||||
```python title="langchain_parrot_link/chat_models.py"
|
||||
from typing import Any, Dict, Iterator, List, Optional
|
||||
|
||||
from langchain_core.callbacks import (
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models import BaseChatModel
|
||||
from langchain_core.messages import AIMessageChunk, BaseMessage, AIMessage
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
|
||||
|
||||
class CustomChatModelAdvanced(BaseChatModel):
|
||||
"""A custom chat model that echoes the first `n` characters of the input.
|
||||
|
||||
When contributing an implementation to LangChain, carefully document
|
||||
the model including the initialization parameters, include
|
||||
an example of how to initialize the model and include any relevant
|
||||
links to the underlying models documentation or API.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
model = CustomChatModel(n=2)
|
||||
result = model.invoke([HumanMessage(content="hello")])
|
||||
result = model.batch([[HumanMessage(content="hello")],
|
||||
[HumanMessage(content="world")]])
|
||||
"""
|
||||
|
||||
model_name: str
|
||||
"""The name of the model"""
|
||||
n: int
|
||||
"""The number of characters from the last message of the prompt to be echoed."""
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
"""Override the _generate method to implement the chat model logic.
|
||||
|
||||
This can be a call to an API, a call to a local model, or any other
|
||||
implementation that generates a response to the input prompt.
|
||||
|
||||
Args:
|
||||
messages: the prompt composed of a list of messages.
|
||||
stop: a list of strings on which the model should stop generating.
|
||||
If generation stops due to a stop token, the stop token itself
|
||||
SHOULD BE INCLUDED as part of the output. This is not enforced
|
||||
across models right now, but it's a good practice to follow since
|
||||
it makes it much easier to parse the output of the model
|
||||
downstream and understand why generation stopped.
|
||||
run_manager: A run manager with callbacks for the LLM.
|
||||
"""
|
||||
# Replace this with actual logic to generate a response from a list
|
||||
# of messages.
|
||||
last_message = messages[-1]
|
||||
tokens = last_message.content[: self.n]
|
||||
message = AIMessage(
|
||||
content=tokens,
|
||||
additional_kwargs={}, # Used to add additional payload (e.g., function calling request)
|
||||
response_metadata={ # Use for response metadata
|
||||
"time_in_seconds": 3,
|
||||
},
|
||||
)
|
||||
##
|
||||
|
||||
generation = ChatGeneration(message=message)
|
||||
return ChatResult(generations=[generation])
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
"""Stream the output of the model.
|
||||
|
||||
This method should be implemented if the model can generate output
|
||||
in a streaming fashion. If the model does not support streaming,
|
||||
do not implement it. In that case streaming requests will be automatically
|
||||
handled by the _generate method.
|
||||
|
||||
Args:
|
||||
messages: the prompt composed of a list of messages.
|
||||
stop: a list of strings on which the model should stop generating.
|
||||
If generation stops due to a stop token, the stop token itself
|
||||
SHOULD BE INCLUDED as part of the output. This is not enforced
|
||||
across models right now, but it's a good practice to follow since
|
||||
it makes it much easier to parse the output of the model
|
||||
downstream and understand why generation stopped.
|
||||
run_manager: A run manager with callbacks for the LLM.
|
||||
"""
|
||||
last_message = messages[-1]
|
||||
tokens = last_message.content[: self.n]
|
||||
|
||||
for token in tokens:
|
||||
chunk = ChatGenerationChunk(message=AIMessageChunk(content=token))
|
||||
|
||||
if run_manager:
|
||||
# This is optional in newer versions of LangChain
|
||||
# The on_llm_new_token will be called automatically
|
||||
run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
|
||||
yield chunk
|
||||
|
||||
# Let's add some other information (e.g., response metadata)
|
||||
chunk = ChatGenerationChunk(
|
||||
message=AIMessageChunk(content="", response_metadata={"time_in_sec": 3})
|
||||
)
|
||||
if run_manager:
|
||||
# This is optional in newer versions of LangChain
|
||||
# The on_llm_new_token will be called automatically
|
||||
run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
yield chunk
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Get the type of language model used by this chat model."""
|
||||
return "echoing-chat-model-advanced"
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
"""Return a dictionary of identifying parameters.
|
||||
|
||||
This information is used by the LangChain callback system, which
|
||||
is used for tracing purposes make it possible to monitor LLMs.
|
||||
"""
|
||||
return {
|
||||
# The model name allows users to specify custom token counting
|
||||
# rules in LLM monitoring applications (e.g., in LangSmith users
|
||||
# can provide per token pricing for their model and monitor
|
||||
# costs for the given LLM.)
|
||||
"model_name": self.model_name,
|
||||
}
|
||||
```
|
||||
</details>
|
||||
|
||||
## Next Steps
|
||||
|
||||
Now that you've implemented your package, you can move on to [testing your integration](../standard_tests) for your integration and successfully run them.
|
145
docs/docs/contributing/how_to/integrations/publish.mdx
Normal file
145
docs/docs/contributing/how_to/integrations/publish.mdx
Normal file
@ -0,0 +1,145 @@
|
||||
---
|
||||
pagination_prev: contributing/how_to/integrations/standard_tests
|
||||
pagination_next: null
|
||||
---
|
||||
|
||||
# Publishing your package
|
||||
|
||||
Now that your package is implemented and tested, you can:
|
||||
|
||||
1. Publish your package to PyPi
|
||||
2. Add documentation for your package to the LangChain Monorepo
|
||||
|
||||
## Publishing your package to PyPi
|
||||
|
||||
This guide assumes you have already implemented your package and written tests for it. If you haven't done that yet, please refer to the [implementation guide](../package) and the [testing guide](../standard_tests).
|
||||
|
||||
Note that Poetry is not required to publish a package to PyPi, and we're using it in this guide end-to-end for convenience.
|
||||
You are welcome to publish your package using any other method you prefer.
|
||||
|
||||
First, make sure you have a PyPi account and have logged in with Poetry:
|
||||
|
||||
<details>
|
||||
<summary>How to create a PyPi Token</summary>
|
||||
|
||||
1. Go to the [PyPi website](https://pypi.org/) and create an account.
|
||||
2. Go to your account settings and enable 2FA. To generate an API token, you **must** have 2FA enabled currently.
|
||||
3. Go to your account settings and [generate a new API token](https://pypi.org/manage/account/token/).
|
||||
|
||||
</details>
|
||||
|
||||
```bash
|
||||
poetry config pypi-token.pypi <your-pypi-token>
|
||||
```
|
||||
|
||||
Next, build your package:
|
||||
|
||||
```bash
|
||||
poetry build
|
||||
```
|
||||
|
||||
Finally, publish your package to PyPi:
|
||||
|
||||
```bash
|
||||
poetry publish
|
||||
```
|
||||
|
||||
You're all set! Your package is now available on PyPi and can be installed with `pip install langchain-parrot-link`.
|
||||
|
||||
## Adding documentation to the LangChain Monorepo
|
||||
|
||||
To add documentation for your package to the LangChain Monorepo, you will need to:
|
||||
|
||||
1. Fork and clone the LangChain Monorepo
|
||||
2. Make a "Provider Page" at `docs/docs/integrations/providers/<your-package-name>.ipynb`
|
||||
3. Make "Component Pages" at `docs/docs/integrations/<component-type>/<your-package-name>.ipynb`
|
||||
4. Register your package in `libs/packages.yml`
|
||||
5. Submit a PR with **only these changes** to the LangChain Monorepo
|
||||
|
||||
### Fork and clone the LangChain Monorepo
|
||||
|
||||
First, fork the [LangChain Monorepo](https://github.com/langchain-ai/langchain) to your GitHub account.
|
||||
|
||||
Next, clone the repository to your local machine:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/<your-username>/langchain.git
|
||||
```
|
||||
|
||||
You're now ready to make your PR!
|
||||
|
||||
### Bootstrap your documentation pages with the langchain-cli (recommended)
|
||||
|
||||
To make it easier to create the necessary documentation pages, you can use the `langchain-cli` to bootstrap them for you.
|
||||
|
||||
First, install the latest version of the `langchain-cli` package:
|
||||
|
||||
```bash
|
||||
pip install --upgrade langchain-cli
|
||||
```
|
||||
|
||||
To see the available commands to bootstrap your documentation pages, run:
|
||||
|
||||
```bash
|
||||
langchain-cli integration create-doc --help
|
||||
```
|
||||
|
||||
Let's bootstrap a provider page from the root of the monorepo:
|
||||
|
||||
```bash
|
||||
langchain-cli integration create-doc \
|
||||
--component-type Provider \
|
||||
--destination-dir docs/docs/integrations/providers \
|
||||
--name parrot-link \
|
||||
--name-class ParrotLink \
|
||||
```
|
||||
|
||||
And a chat model component page:
|
||||
|
||||
```bash
|
||||
langchain-cli integration create-doc \
|
||||
--component-type ChatModel \
|
||||
--destination-dir docs/docs/integrations/chat \
|
||||
--name parrot-link \
|
||||
--name-class ParrotLink \
|
||||
```
|
||||
|
||||
And a vector store component page:
|
||||
|
||||
```bash
|
||||
langchain-cli integration create-doc \
|
||||
--component-type VectorStore \
|
||||
--destination-dir docs/docs/integrations/vectorstores \
|
||||
--name parrot-link \
|
||||
--name-class ParrotLink \
|
||||
```
|
||||
|
||||
These commands will create the following 3 files, which you should fill out with information about your package:
|
||||
|
||||
- `docs/docs/integrations/providers/parrot-link.ipynb`
|
||||
- `docs/docs/integrations/chat/parrot-link.ipynb`
|
||||
- `docs/docs/integrations/vectorstores/parrot-link.ipynb`
|
||||
|
||||
### Manually create your documentation pages (if you prefer)
|
||||
|
||||
If you prefer to create the documentation pages manually, you can create the same files listed
|
||||
above and fill them out with information about your package.
|
||||
|
||||
You can view the templates that the CLI uses to create these files [here](https://github.com/langchain-ai/langchain/tree/master/libs/cli/langchain_cli/integration_template/docs) if helpful!
|
||||
|
||||
### Register your package in `libs/packages.yml`
|
||||
|
||||
Finally, add your package to the `libs/packages.yml` file in the LangChain Monorepo.
|
||||
|
||||
```yaml
|
||||
packages:
|
||||
- name: langchain-parrot-link
|
||||
repo: <your github handle>/<your repo>
|
||||
path: .
|
||||
```
|
||||
|
||||
For `path`, you can use `.` if your package is in the root of your repository, or specify a subdirectory (e.g. `libs/parrot-link`) if it is in a subdirectory.
|
||||
|
||||
### Submit a PR with your changes
|
||||
|
||||
Once you have completed these steps, you can submit a PR to the LangChain Monorepo with **only these changes**.
|
@ -4,6 +4,10 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"pagination_next: contributing/how_to/integrations/publish\n",
|
||||
"pagination_prev: contributing/how_to/integrations/package\n",
|
||||
"---\n",
|
||||
"# How to add standard tests to an integration\n",
|
||||
"\n",
|
||||
"When creating either a custom class for yourself or a new tool to publish in a LangChain integration, it is important to add standard tests to ensure it works as expected. This guide will show you how to add standard tests to a tool, and you can **[Skip to the test templates](#standard-test-templates-per-component)** for implementing tests for each integration.\n",
|
||||
@ -20,16 +24,29 @@
|
||||
"Because added tests in new versions of `langchain-tests` can break your CI/CD pipelines, we recommend pinning the \n",
|
||||
"version of `langchain-tests` to avoid unexpected changes.\n",
|
||||
"\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -U langchain-core langchain-tests pytest pytest-socket"
|
||||
":::\n",
|
||||
"\n",
|
||||
"import Tabs from '@theme/Tabs';\n",
|
||||
"import TabItem from '@theme/TabItem';\n",
|
||||
"\n",
|
||||
"<Tabs>\n",
|
||||
" <TabItem value=\"poetry\" label=\"Poetry\" default>\n",
|
||||
"If you followed the [previous guide](../package), you should already have these dependencies installed!\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"poetry add langchain-core\n",
|
||||
"poetry add --group test pytest pytest-socket langchain-tests==<latest_version>\n",
|
||||
"```\n",
|
||||
" </TabItem>\n",
|
||||
" <TabItem value=\"pip\" label=\"Pip\">\n",
|
||||
"```bash\n",
|
||||
"pip install -U langchain-core pytest pytest-socket langchain-tests\n",
|
||||
"\n",
|
||||
"# install current package in editable mode\n",
|
||||
"pip install --editable .\n",
|
||||
"```\n",
|
||||
" </TabItem>\n",
|
||||
"</Tabs>"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -176,13 +193,30 @@
|
||||
"source": [
|
||||
"and you would run these with the following commands from your project root\n",
|
||||
"\n",
|
||||
"<Tabs>\n",
|
||||
" <TabItem value=\"poetry\" label=\"Poetry\" default>\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"# run unit tests without network access\n",
|
||||
"poetry run pytest --disable-socket --allow-unix-socket tests/unit_tests\n",
|
||||
"\n",
|
||||
"# run integration tests\n",
|
||||
"poetry run pytest tests/integration_tests\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
" </TabItem>\n",
|
||||
" <TabItem value=\"pip\" label=\"Pip\">\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"# run unit tests without network access\n",
|
||||
"pytest --disable-socket --allow-unix-socket tests/unit_tests\n",
|
||||
"\n",
|
||||
"# run integration tests\n",
|
||||
"pytest tests/integration_tests\n",
|
||||
"```"
|
||||
"```\n",
|
||||
"\n",
|
||||
" </TabItem>\n",
|
||||
"</Tabs>"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -162,23 +162,21 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": null,
|
||||
"id": "25ba32e5-5a6d-49f4-bb68-911827b84d61",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import Any, AsyncIterator, Dict, Iterator, List, Optional\n",
|
||||
"from typing import Any, Dict, Iterator, List, Optional\n",
|
||||
"\n",
|
||||
"from langchain_core.callbacks import (\n",
|
||||
" AsyncCallbackManagerForLLMRun,\n",
|
||||
" CallbackManagerForLLMRun,\n",
|
||||
")\n",
|
||||
"from langchain_core.language_models import BaseChatModel, SimpleChatModel\n",
|
||||
"from langchain_core.language_models import BaseChatModel\n",
|
||||
"from langchain_core.messages import AIMessageChunk, BaseMessage, HumanMessage\n",
|
||||
"from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult\n",
|
||||
"from langchain_core.runnables import run_in_executor\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class CustomChatModelAdvanced(BaseChatModel):\n",
|
||||
|
@ -140,6 +140,8 @@ TEMPLATE_MAP: dict[str, str] = {
|
||||
"Retriever": "retrievers.ipynb",
|
||||
}
|
||||
|
||||
_component_types_str = ", ".join(f"`{k}`" for k in TEMPLATE_MAP.keys())
|
||||
|
||||
|
||||
@integration_cli.command()
|
||||
def create_doc(
|
||||
@ -170,8 +172,7 @@ def create_doc(
|
||||
str,
|
||||
typer.Option(
|
||||
help=(
|
||||
"The type of component. Currently only 'ChatModel', "
|
||||
"'DocumentLoader', 'VectorStore' supported."
|
||||
f"The type of component. Currently supported: {_component_types_str}."
|
||||
),
|
||||
),
|
||||
] = "ChatModel",
|
||||
@ -220,8 +221,7 @@ def create_doc(
|
||||
docs_template = template_dir / TEMPLATE_MAP[component_type]
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unrecognized {component_type=}. Expected one of 'ChatModel', "
|
||||
f"'DocumentLoader', 'Tool'."
|
||||
f"Unrecognized {component_type=}. Expected one of {_component_types_str}."
|
||||
)
|
||||
shutil.copy(docs_template, destination_path)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user