Update Banana.dev docs to latest correct usage (#10183)

- Description: this PR updates all Banana.dev-related docs to match the
latest client usage. The code in the docs before this PR were out of
date and would never run.
- Issue: [#6404](https://github.com/langchain-ai/langchain/issues/6404)
- Dependencies: -
- Tag maintainer:  
- Twitter handle: [BananaDev_ ](https://twitter.com/BananaDev_ )
This commit is contained in:
Nik
2023-09-06 16:46:17 +02:00
committed by GitHub
parent 9e839d4977
commit 49341483da
3 changed files with 64 additions and 53 deletions

View File

@@ -31,11 +31,16 @@
"outputs": [],
"source": [
"# get new tokens: https://app.banana.dev/\n",
"# We need two tokens, not just an `api_key`: `BANANA_API_KEY` and `YOUR_MODEL_KEY`\n",
"# We need three parameters to make a Banana.dev API call:\n",
"# * a team api key\n",
"# * the model's unique key\n",
"# * the model's url slug\n",
"\n",
"import os\n",
"from getpass import getpass\n",
"\n",
"# You can get this from the main dashboard\n",
"# at https://app.banana.dev\n",
"os.environ[\"BANANA_API_KEY\"] = \"YOUR_API_KEY\"\n",
"# OR\n",
"# BANANA_API_KEY = getpass()"
@@ -70,7 +75,9 @@
"metadata": {},
"outputs": [],
"source": [
"llm = Banana(model_key=\"YOUR_MODEL_KEY\")"
"# Both of these are found in your model's \n",
"# detail page in https://app.banana.dev\n",
"llm = Banana(model_key=\"YOUR_MODEL_KEY\", model_url_slug=\"YOUR_MODEL_URL_SLUG\")"
]
},
{

View File

@@ -1,79 +1,72 @@
# Banana
This page covers how to use the Banana ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Banana wrappers.
Banana provided serverless GPU inference for AI models, including a CI/CD build pipeline and a simple Python framework (Potassium) to server your models.
This page covers how to use the [Banana](https://www.banana.dev) ecosystem within LangChain.
It is broken into two parts:
* installation and setup,
* and then references to specific Banana wrappers.
## Installation and Setup
- Install with `pip install banana-dev`
- Get an Banana api key and set it as an environment variable (`BANANA_API_KEY`)
- Get an Banana api key from the [Banana.dev dashboard](https://app.banana.dev) and set it as an environment variable (`BANANA_API_KEY`)
- Get your model's key and url slug from the model's details page
## Define your Banana Template
If you want to use an available language model template you can find one [here](https://app.banana.dev/templates/conceptofmind/serverless-template-palmyra-base).
This template uses the Palmyra-Base model by [Writer](https://writer.com/product/api/).
You can check out an example Banana repository [here](https://github.com/conceptofmind/serverless-template-palmyra-base).
You'll need to set up a Github repo for your Banana app. You can get started in 5 minutes using [this guide](https://docs.banana.dev/banana-docs/).
Alternatively, for a ready-to-go LLM example, you can check out Banana's [CodeLlama-7B-Instruct-GPTQ](https://github.com/bananaml/demo-codellama-7b-instruct-gptq) GitHub repository. Just fork it and deploy it within Banana.
Other starter repos are available [here](https://github.com/orgs/bananaml/repositories?q=demo-&type=all&language=&sort=).
## Build the Banana app
Banana Apps must include the "output" key in the return json.
There is a rigid response structure.
To use Banana apps within Langchain, they must include the `outputs` key
in the returned json, and the value must be a string.
```python
# Return the results as a dictionary
result = {'output': result}
result = {'outputs': result}
```
An example inference function would be:
```python
def inference(model_inputs:dict) -> dict:
global model
global tokenizer
# Parse out your arguments
prompt = model_inputs.get('prompt', None)
if prompt == None:
return {'message': "No prompt provided"}
# Run the model
input_ids = tokenizer.encode(prompt, return_tensors='pt').cuda()
output = model.generate(
input_ids,
max_length=100,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1,
temperature=0.9,
early_stopping=True,
no_repeat_ngram_size=3,
num_beams=5,
length_penalty=1.5,
repetition_penalty=1.5,
bad_words_ids=[[tokenizer.encode(' ', add_prefix_space=True)[0]]]
)
result = tokenizer.decode(output[0], skip_special_tokens=True)
# Return the results as a dictionary
result = {'output': result}
return result
@app.handler("/")
def handler(context: dict, request: Request) -> Response:
"""Handle a request to generate code from a prompt."""
model = context.get("model")
tokenizer = context.get("tokenizer")
max_new_tokens = request.json.get("max_new_tokens", 512)
temperature = request.json.get("temperature", 0.7)
prompt = request.json.get("prompt")
prompt_template=f'''[INST] Write code to solve the following coding problem that obeys the constraints and passes the example test cases. Please wrap your code answer using ```:
{prompt}
[/INST]
'''
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=temperature, max_new_tokens=max_new_tokens)
result = tokenizer.decode(output[0])
return Response(json={"outputs": result}, status=200)
```
You can find a full example of a Banana app [here](https://github.com/conceptofmind/serverless-template-palmyra-base/blob/main/app.py).
This example is from the `app.py` file in [CodeLlama-7B-Instruct-GPTQ](https://github.com/bananaml/demo-codellama-7b-instruct-gptq).
## Wrappers
### LLM
There exists an Banana LLM wrapper, which you can access with
Within Langchain, there exists a Banana LLM wrapper, which you can access with
```python
from langchain.llms import Banana
```
You need to provide a model key located in the dashboard:
You need to provide a model key and model url slug, which you can get from the model's details page in the [Banana.dev dashboard](https://app.banana.dev).
```python
llm = Banana(model_key="YOUR_MODEL_KEY")
llm = Banana(model_key="YOUR_MODEL_KEY", model_url_slug="YOUR_MODEL_URL_SLUG")
```