core,integrations[minor]: Dont error on fields in model_kwargs (#27110)

Given the current erroring behavior, every time we've moved a kwarg from
model_kwargs and made it its own field that was a breaking change.
Updating this behavior to support the old instantiations /
serializations.

Assuming build_extra_kwargs was not something that itself is being used
externally and needs to be kept backwards compatible
This commit is contained in:
Bagatur 2024-10-04 11:30:27 -07:00 committed by GitHub
parent 0495b7f441
commit 4935a14314
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
17 changed files with 91 additions and 68 deletions

View File

@ -17,7 +17,7 @@ from langchain_core.utils import (
get_pydantic_field_names,
pre_init,
)
from langchain_core.utils.utils import build_extra_kwargs
from langchain_core.utils.utils import _build_model_kwargs
from pydantic import Field, SecretStr, model_validator
SUPPORTED_ROLES: List[str] = [
@ -131,10 +131,7 @@ class ChatSnowflakeCortex(BaseChatModel):
def build_extra(cls, values: Dict[str, Any]) -> Any:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
values = _build_model_kwargs(values, all_required_field_names)
return values
@pre_init

View File

@ -26,7 +26,7 @@ from langchain_core.utils import (
get_pydantic_field_names,
pre_init,
)
from langchain_core.utils.utils import build_extra_kwargs, convert_to_secret_str
from langchain_core.utils.utils import _build_model_kwargs, convert_to_secret_str
from pydantic import ConfigDict, Field, SecretStr, model_validator
@ -69,11 +69,8 @@ class _AnthropicCommon(BaseLanguageModel):
@model_validator(mode="before")
@classmethod
def build_extra(cls, values: Dict) -> Any:
extra = values.get("model_kwargs", {})
all_required_field_names = get_pydantic_field_names(cls)
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
values = _build_model_kwargs(values, all_required_field_names)
return values
@pre_init

View File

@ -8,7 +8,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.utils import get_pydantic_field_names, pre_init
from langchain_core.utils.utils import build_extra_kwargs
from langchain_core.utils.utils import _build_model_kwargs
from pydantic import Field, model_validator
logger = logging.getLogger(__name__)
@ -199,10 +199,7 @@ class LlamaCpp(LLM):
def build_model_kwargs(cls, values: Dict[str, Any]) -> Any:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
values = _build_model_kwargs(values, all_required_field_names)
return values
@property

View File

@ -34,7 +34,7 @@ from langchain_core.utils import (
pre_init,
)
from langchain_core.utils.pydantic import get_fields
from langchain_core.utils.utils import build_extra_kwargs
from langchain_core.utils.utils import _build_model_kwargs
from pydantic import ConfigDict, Field, model_validator
from langchain_community.utils.openai import is_openai_v1
@ -268,10 +268,7 @@ class BaseOpenAI(BaseLLM):
def build_extra(cls, values: Dict[str, Any]) -> Any:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
values = _build_model_kwargs(values, all_required_field_names)
return values
@pre_init

View File

@ -33,9 +33,12 @@ def test_anthropic_model_kwargs() -> None:
@pytest.mark.requires("anthropic")
def test_anthropic_invalid_model_kwargs() -> None:
with pytest.raises(ValueError):
ChatAnthropic(model_kwargs={"max_tokens_to_sample": 5})
def test_anthropic_fields_in_model_kwargs() -> None:
"""Test that for backwards compatibility fields can be passed in as model_kwargs."""
llm = ChatAnthropic(model_kwargs={"max_tokens_to_sample": 5})
assert llm.max_tokens_to_sample == 5
llm = ChatAnthropic(model_kwargs={"max_tokens": 5})
assert llm.max_tokens_to_sample == 5
@pytest.mark.requires("anthropic")

View File

@ -26,13 +26,12 @@ def test_openai_model_kwargs() -> None:
@pytest.mark.requires("openai")
def test_openai_invalid_model_kwargs() -> None:
with pytest.raises(ValueError):
OpenAI(model_kwargs={"model_name": "foo"})
# Test that "model" cannot be specified in kwargs
with pytest.raises(ValueError):
OpenAI(model_kwargs={"model": "gpt-3.5-turbo-instruct"})
def test_openai_fields_model_kwargs() -> None:
"""Test that for backwards compatibility fields can be passed in as model_kwargs."""
llm = OpenAI(model_kwargs={"model_name": "foo"}, api_key="foo")
assert llm.model_name == "foo"
llm = OpenAI(model_kwargs={"model": "foo"}, api_key="foo")
assert llm.model_name == "foo"
@pytest.mark.requires("openai")

View File

@ -32,6 +32,7 @@ from langchain_core.utils.utils import (
)
__all__ = [
"build_extra_kwargs",
"StrictFormatter",
"check_package_version",
"convert_to_secret_str",
@ -46,7 +47,6 @@ __all__ = [
"raise_for_status_with_text",
"xor_args",
"try_load_from_hub",
"build_extra_kwargs",
"image",
"get_from_env",
"get_from_dict_or_env",

View File

@ -210,6 +210,51 @@ def get_pydantic_field_names(pydantic_cls: Any) -> set[str]:
return all_required_field_names
def _build_model_kwargs(
values: dict[str, Any],
all_required_field_names: set[str],
) -> dict[str, Any]:
"""Build "model_kwargs" param from Pydanitc constructor values.
Args:
values: All init args passed in by user.
all_required_field_names: All required field names for the pydantic class.
Returns:
Dict[str, Any]: Extra kwargs.
Raises:
ValueError: If a field is specified in both values and extra_kwargs.
ValueError: If a field is specified in model_kwargs.
"""
extra_kwargs = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra_kwargs:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
warnings.warn(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended.""",
stacklevel=7,
)
extra_kwargs[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra_kwargs.keys())
if invalid_model_kwargs:
warnings.warn(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter.",
stacklevel=7,
)
for k in invalid_model_kwargs:
values[k] = extra_kwargs.pop(k)
values["model_kwargs"] = extra_kwargs
return values
# DON'T USE! Kept for backwards-compatibility but should never have been public.
def build_extra_kwargs(
extra_kwargs: dict[str, Any],
values: dict[str, Any],

View File

@ -17,8 +17,8 @@ EXPECTED_ALL = [
"raise_for_status_with_text",
"xor_args",
"try_load_from_hub",
"build_extra_kwargs",
"image",
"build_extra_kwargs",
"get_from_dict_or_env",
"get_from_env",
"stringify_dict",

View File

@ -56,13 +56,13 @@ from langchain_core.runnables import (
)
from langchain_core.tools import BaseTool
from langchain_core.utils import (
build_extra_kwargs,
from_env,
get_pydantic_field_names,
secret_from_env,
)
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_core.utils.pydantic import is_basemodel_subclass
from langchain_core.utils.utils import _build_model_kwargs
from pydantic import (
BaseModel,
ConfigDict,
@ -646,11 +646,8 @@ class ChatAnthropic(BaseChatModel):
@model_validator(mode="before")
@classmethod
def build_extra(cls, values: Dict) -> Any:
extra = values.get("model_kwargs", {})
all_required_field_names = get_pydantic_field_names(cls)
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
values = _build_model_kwargs(values, all_required_field_names)
return values
@model_validator(mode="after")

View File

@ -25,7 +25,7 @@ from langchain_core.utils import (
get_pydantic_field_names,
)
from langchain_core.utils.utils import (
build_extra_kwargs,
_build_model_kwargs,
from_env,
secret_from_env,
)
@ -88,11 +88,8 @@ class _AnthropicCommon(BaseLanguageModel):
@model_validator(mode="before")
@classmethod
def build_extra(cls, values: Dict) -> Any:
extra = values.get("model_kwargs", {})
all_required_field_names = get_pydantic_field_names(cls)
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
values = _build_model_kwargs(values, all_required_field_names)
return values
@model_validator(mode="after")

View File

@ -61,9 +61,12 @@ def test_anthropic_model_kwargs() -> None:
@pytest.mark.requires("anthropic")
def test_anthropic_invalid_model_kwargs() -> None:
with pytest.raises(ValueError):
ChatAnthropic(model="foo", model_kwargs={"max_tokens_to_sample": 5}) # type: ignore[call-arg]
def test_anthropic_fields_in_model_kwargs() -> None:
"""Test that for backwards compatibility fields can be passed in as model_kwargs."""
llm = ChatAnthropic(model="foo", model_kwargs={"max_tokens_to_sample": 5}) # type: ignore[call-arg]
assert llm.max_tokens == 5
llm = ChatAnthropic(model="foo", model_kwargs={"max_tokens": 5}) # type: ignore[call-arg]
assert llm.max_tokens == 5
@pytest.mark.requires("anthropic")

View File

@ -79,7 +79,7 @@ from langchain_core.utils.function_calling import (
convert_to_openai_tool,
)
from langchain_core.utils.pydantic import is_basemodel_subclass
from langchain_core.utils.utils import build_extra_kwargs, from_env, secret_from_env
from langchain_core.utils.utils import _build_model_kwargs, from_env, secret_from_env
from pydantic import (
BaseModel,
ConfigDict,
@ -366,10 +366,7 @@ class ChatFireworks(BaseChatModel):
def build_extra(cls, values: Dict[str, Any]) -> Any:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
values = _build_model_kwargs(values, all_required_field_names)
return values
@model_validator(mode="after")

View File

@ -11,7 +11,7 @@ from langchain_core.callbacks import (
)
from langchain_core.language_models.llms import LLM
from langchain_core.utils import get_pydantic_field_names
from langchain_core.utils.utils import build_extra_kwargs, secret_from_env
from langchain_core.utils.utils import _build_model_kwargs, secret_from_env
from pydantic import ConfigDict, Field, SecretStr, model_validator
from langchain_fireworks.version import __version__
@ -93,10 +93,7 @@ class Fireworks(LLM):
def build_extra(cls, values: Dict[str, Any]) -> Any:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
values = _build_model_kwargs(values, all_required_field_names)
return values
@property

View File

@ -90,7 +90,7 @@ from langchain_core.utils.pydantic import (
TypeBaseModel,
is_basemodel_subclass,
)
from langchain_core.utils.utils import build_extra_kwargs, from_env, secret_from_env
from langchain_core.utils.utils import _build_model_kwargs, from_env, secret_from_env
from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator
from typing_extensions import Self
@ -477,10 +477,7 @@ class BaseChatOpenAI(BaseChatModel):
def build_extra(cls, values: Dict[str, Any]) -> Any:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
values = _build_model_kwargs(values, all_required_field_names)
return values
@model_validator(mode="after")

View File

@ -27,7 +27,7 @@ from langchain_core.callbacks import (
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.utils import get_pydantic_field_names
from langchain_core.utils.utils import build_extra_kwargs, from_env, secret_from_env
from langchain_core.utils.utils import _build_model_kwargs, from_env, secret_from_env
from pydantic import ConfigDict, Field, SecretStr, model_validator
from typing_extensions import Self
@ -160,10 +160,7 @@ class BaseOpenAI(BaseLLM):
def build_extra(cls, values: Dict[str, Any]) -> Any:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
values = _build_model_kwargs(values, all_required_field_names)
return values
@model_validator(mode="after")

View File

@ -30,9 +30,12 @@ def test_openai_model_kwargs() -> None:
assert llm.model_kwargs == {"foo": "bar"}
def test_openai_invalid_model_kwargs() -> None:
with pytest.raises(ValueError):
OpenAI(model_kwargs={"model_name": "foo"})
def test_openai_fields_in_model_kwargs() -> None:
"""Test that for backwards compatibility fields can be passed in as model_kwargs."""
llm = OpenAI(model_kwargs={"model_name": "foo"})
assert llm.model_name == "foo"
llm = OpenAI(model_kwargs={"model": "foo"})
assert llm.model_name == "foo"
def test_openai_incorrect_field() -> None: