core[minor]: Add msg content formatting util

This commit is contained in:
Bagatur 2024-08-28 16:31:30 -07:00
parent d6c4803ab0
commit 49f7c8cdd8
2 changed files with 931 additions and 25 deletions

View File

@ -9,8 +9,10 @@ Some examples of what you can do with these functions include:
from __future__ import annotations from __future__ import annotations
import base64
import inspect import inspect
import json import json
import re
from functools import partial from functools import partial
from typing import ( from typing import (
TYPE_CHECKING, TYPE_CHECKING,
@ -37,6 +39,9 @@ from langchain_core.messages.human import HumanMessage, HumanMessageChunk
from langchain_core.messages.modifier import RemoveMessage from langchain_core.messages.modifier import RemoveMessage
from langchain_core.messages.system import SystemMessage, SystemMessageChunk from langchain_core.messages.system import SystemMessage, SystemMessageChunk
from langchain_core.messages.tool import ToolMessage, ToolMessageChunk from langchain_core.messages.tool import ToolMessage, ToolMessageChunk
from langchain_core.messages.tool import (
tool_call as create_tool_call,
)
if TYPE_CHECKING: if TYPE_CHECKING:
from langchain_text_splitters import TextSplitter from langchain_text_splitters import TextSplitter
@ -252,7 +257,9 @@ def _create_message_from_message_type(
return message return message
def _convert_to_message(message: MessageLikeRepresentation) -> BaseMessage: def _convert_to_message(
message: MessageLikeRepresentation, *, copy: bool = False
) -> BaseMessage:
"""Instantiate a message from a variety of message formats. """Instantiate a message from a variety of message formats.
The message format can be one of the following: The message format can be one of the following:
@ -274,7 +281,10 @@ def _convert_to_message(message: MessageLikeRepresentation) -> BaseMessage:
ValueError: if the message dict does not contain the required keys. ValueError: if the message dict does not contain the required keys.
""" """
if isinstance(message, BaseMessage): if isinstance(message, BaseMessage):
_message = message if copy:
_message = message.__class__(**message.dict())
else:
_message = message
elif isinstance(message, str): elif isinstance(message, str):
_message = _create_message_from_message_type("human", message) _message = _create_message_from_message_type("human", message)
elif isinstance(message, Sequence) and len(message) == 2: elif isinstance(message, Sequence) and len(message) == 2:
@ -305,6 +315,8 @@ def _convert_to_message(message: MessageLikeRepresentation) -> BaseMessage:
def convert_to_messages( def convert_to_messages(
messages: Union[Iterable[MessageLikeRepresentation], PromptValue], messages: Union[Iterable[MessageLikeRepresentation], PromptValue],
*,
copy: bool = False,
) -> List[BaseMessage]: ) -> List[BaseMessage]:
"""Convert a sequence of messages to a list of messages. """Convert a sequence of messages to a list of messages.
@ -319,35 +331,87 @@ def convert_to_messages(
if isinstance(messages, PromptValue): if isinstance(messages, PromptValue):
return messages.to_messages() return messages.to_messages()
return [_convert_to_message(m) for m in messages] return [_convert_to_message(m, copy=copy) for m in messages]
def _runnable_support(func: Callable) -> Callable: def _runnable_support(*args: Callable, supports_single: bool = False) -> Callable:
@overload if supports_single:
def wrapped(
messages: Literal[None] = None, **kwargs: Any
) -> Runnable[Sequence[MessageLikeRepresentation], List[BaseMessage]]: ...
@overload def runnable_support(func: Callable) -> Callable:
def wrapped( @overload
messages: Sequence[MessageLikeRepresentation], **kwargs: Any def wrapped(
) -> List[BaseMessage]: ... messages: Literal[None] = None, **kwargs: Any
) -> Runnable[
Union[MessageLikeRepresentation, Sequence[MessageLikeRepresentation]],
Union[BaseMessage, List[BaseMessage]],
]: ...
def wrapped( @overload
messages: Optional[Sequence[MessageLikeRepresentation]] = None, **kwargs: Any def wrapped(
) -> Union[ messages: Sequence[Union[BaseMessage, Dict, Tuple]], **kwargs: Any
List[BaseMessage], ) -> List[BaseMessage]: ...
Runnable[Sequence[MessageLikeRepresentation], List[BaseMessage]],
]:
from langchain_core.runnables.base import RunnableLambda
if messages is not None: @overload
return func(messages, **kwargs) def wrapped(
else: messages: MessageLikeRepresentation, **kwargs: Any
return RunnableLambda(partial(func, **kwargs), name=func.__name__) ) -> BaseMessage: ...
wrapped.__doc__ = func.__doc__ def wrapped(
return wrapped messages: Union[
MessageLikeRepresentation, Sequence[MessageLikeRepresentation], None
] = None,
**kwargs: Any,
) -> Union[
BaseMessage,
List[BaseMessage],
Runnable[
Union[
MessageLikeRepresentation, Sequence[MessageLikeRepresentation]
],
Union[BaseMessage, List[BaseMessage]],
],
]:
from langchain_core.runnables.base import RunnableLambda
if messages is not None:
return func(messages, **kwargs)
else:
return RunnableLambda(partial(func, **kwargs), name=func.__name__)
wrapped.__doc__ = func.__doc__
return wrapped
else:
def runnable_support(func: Callable) -> Callable:
@overload
def wrapped(
messages: Literal[None] = None, **kwargs: Any
) -> Runnable[Sequence[MessageLikeRepresentation], List[BaseMessage]]: ...
@overload
def wrapped(
messages: Sequence[MessageLikeRepresentation], **kwargs: Any
) -> List[BaseMessage]: ...
def wrapped(
messages: Union[Sequence[MessageLikeRepresentation], None] = None,
**kwargs: Any,
) -> Union[
Runnable[Sequence[MessageLikeRepresentation], List[BaseMessage]],
List[BaseMessage],
]:
from langchain_core.runnables.base import RunnableLambda
if messages is not None:
return func(messages, **kwargs)
else:
return RunnableLambda(partial(func, **kwargs), name=func.__name__)
wrapped.__doc__ = func.__doc__
return wrapped
return runnable_support(*args) if args else cast(Callable, runnable_support)
@_runnable_support @_runnable_support
@ -845,6 +909,571 @@ def trim_messages(
) )
@_runnable_support(supports_single=True)
def format_content_as(
messages: Union[MessageLikeRepresentation, Iterable[MessageLikeRepresentation]],
*,
format: Literal["openai", "anthropic"],
text: Literal["string", "block"],
) -> Union[BaseMessage, List[BaseMessage]]:
"""Convert message contents into a standard format.
.. versionadded:: 0.2.36
Args:
messages: Message-like object or iterable of objects whose contents are already
in OpenAI, Anthropic, Bedrock Converse, or VertexAI formats.
format: Format to convert message contents to.
text: How to format text contents. If ``text='string'`` then any string
contents are left as strings. If a message has content blocks that are all
of type 'text', these are joined with a newline to make a single string. If
a message has content blocks and at least one isn't of type 'text', then
all blocks are left as dicts. If ``text='block'`` then all contents are
turned into a list of dicts.
Returns:
A single BaseMessage is a single message-like object was passed in, else list
of BaseMessages.
.. dropdown:: Basic usage
:open:
.. code-block:: python
from langchain_core.messages import format_content_as
messages = [
SystemMessage,
{},
(),
AIMessage(),
ToolMessage(),
]
oai_strings = format_content_as(messages, format="openai", text="string")
anthropic_blocks = format_content_as(messages, format="anthropic", text="block")
.. dropdown:: Chain usage
:open:
.. code-block:: python
from langchain_core.messages import format_content_as
from langchain.chat_models import init_chat_model
formatter = format_content_as(format="openai", text="block")
llm = init_chat_model() | formatter
llm.invoke(
[{"role": "user", "content": "how are you"}],
config={"model": "gpt-4o"},
)
# -> AIMessage([{"type": "text", "text": ""}], ...)
llm.invoke(
[{"role": "user", "content": "whats your name"}],
config={"model": "claude-3-5-sonnet-20240620"})
# -> AIMessage([{"type": "text", "text": ""}], ...)
.. note:: Doesn't support streaming
This util does not support formatting streamed chunks on the fly (i.e.
"transforming" chunks). This means if you pipe the outputs of a model to this
formatter in a chain, the chain will not have token-level streaming when
using ``chain.stream()/.astream()``. You'll still see the
token stream when using ``chat.astream_events()`` but the message chunks will
not yet be formatted.
.. code-block:: python
from langchain_core.messages import format_content_as
from langchain.chat_models import init_chat_model
formatter = format_content_as(format="openai", text="block")
llm = init_chat_model() | formatter
# Will contain a single, completed chunk.
list(llm.stream(
[{"role": "user", "content": "how are you"}],
config={"model": "gpt-4o"},
))
# Will include token-level events, but the streamed chunks will not yet be
# formatted.
async for chunk in llm.astream_events(
[{"role": "user", "content": "how are you"}],
config={"model": "gpt-4o"},
version="v2",
):
...
""" # noqa: E501
if is_single := isinstance(messages, (BaseMessage, dict)):
messages = [messages]
messages = convert_to_messages(messages, copy=True)
if format.lower() == "openai":
formatted = _format_contents_as_openai(messages, text=text)
elif format.lower() == "anthropic":
formatted = _format_contents_as_anthropic(messages, text=text)
else:
raise ValueError(
f"Unrecognized {format=}. Expected one of ('openai', 'anthropic')."
)
if is_single:
return formatted[0]
else:
return formatted
def _format_contents_as_openai(
messages: Sequence[BaseMessage], *, text: Literal["string", "block"]
) -> List[BaseMessage]:
"""Mutates messages so their contents match OpenAI messages API."""
updated_messages: list = []
for i, message in enumerate(messages):
tool_messages: list = []
if not message.content:
message.content = "" if text == "string" else []
elif isinstance(message.content, str):
if text == "string":
pass
else:
message.content = [{"type": "text", "text": message.content}]
else:
if text == "string" and all(
isinstance(block, str) or block.get("type") == "text"
for block in message.content
):
message.content = "\n".join(
block if isinstance(block, str) else block["text"]
for block in message.content
)
else:
content: List[dict] = []
for j, block in enumerate(message.content):
# OpenAI format
if isinstance(block, str):
content.append({"type": "text", "text": block})
elif block.get("type") == "text":
if missing := [k for k in ("text",) if k not in block]:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': 'text' "
f"but is missing expected key(s) "
f"{missing}. Full content block:\n\n{block}"
)
content.append({"type": block["type"], "text": block["text"]})
elif block.get("type") == "image_url":
if missing := [k for k in ("image_url",) if k not in block]:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': 'image_url' "
f"but is missing expected key(s) "
f"{missing}. Full content block:\n\n{block}"
)
content.append(
{"type": "image_url", "image_url": block["image_url"]}
)
# Anthropic and Bedrock converse format
elif (block.get("type") == "image") or "image" in block:
# Anthropic
if source := block.get("source"):
if missing := [
k
for k in ("media_type", "type", "data")
if k not in source
]:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': 'image' "
f"but 'source' is missing expected key(s) "
f"{missing}. Full content block:\n\n{block}"
)
content.append(
{
"type": "image_url",
"image_url": {
"url": (
f"data:{source['media_type']};"
f"{source['type']},{source['data']}"
)
},
}
)
# Bedrock converse
elif image := block.get("image"):
raise ValueError("1064")
if missing := [
k for k in ("source", "format") if k not in image
]:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has key 'image', "
f"but 'image' is missing expected key(s) "
f"{missing}. Full content block:\n\n{block}"
)
b64_image = _bytes_to_b64_str(image["source"]["bytes"])
content.append(
{
"type": "image_url",
"image_url": {
"url": (
f"data:image/{image['format']};"
f"base64,{b64_image}"
)
},
}
)
else:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': 'image' "
f"but does not have a 'source' or 'image' key. Full "
f"content block:\n\n{block}"
)
elif block.get("type") == "tool_use":
if missing := [
k for k in ("id", "name", "input") if k not in block
]:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': 'tool_use', "
f"but is missing expected key(s) "
f"{missing}. Full content block:\n\n{block}"
)
if not any(
tool_call["id"] == block["id"]
for tool_call in cast(AIMessage, message).tool_calls
):
cast(AIMessage, message).tool_calls.append(
create_tool_call(
name=block["name"],
id=block["id"],
args=block["input"],
)
)
elif block.get("type") == "tool_result":
if missing := [
k for k in ("content", "tool_use_id") if k not in block
]:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': "
f"'tool_result', but is missing expected key(s) "
f"{missing}. Full content block:\n\n{block}"
)
tool_message = ToolMessage(
block["content"],
tool_call_id=block["tool_use_id"],
status="error" if block.get("is_error") else "success",
)
# Recurse to make sure tool message contents are OpenAI format.
tool_messages.extend(
_format_contents_as_openai([tool_message], text=text)
)
elif (block.get("type") == "json") or "json" in block:
if "json" not in block:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': 'json' "
f"but does not have a 'json' key. Full "
f"content block:\n\n{block}"
)
content.append(
{"type": "text", "text": json.dumps(block["json"])}
)
elif (
block.get("type") == "guard_content"
) or "guard_content" in block:
if (
"guard_content" not in block
or "text" not in block["guard_content"]
):
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': "
f"'guard_content' but does not have a "
f"messages[{i}].content[{j}]['guard_content']['text'] "
f"key. Full content block:\n\n{block}"
)
text = block["guard_content"]["text"]
if isinstance(text, dict):
text = text["text"]
content.append({"type": "text", "text": text})
# VertexAI format
elif block.get("type") == "media":
if missing := [
k for k in ("mime_type", "data") if k not in block
]:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': "
f"'media' but does not have key(s) {missing}. Full "
f"content block:\n\n{block}"
)
if "image" not in block["mime_type"]:
raise ValueError(
f"OpenAI messages can only support text and image data."
f" Received content block with media of type:"
f" {block['mime_type']}"
)
b64_image = _bytes_to_b64_str(block["data"])
content.append(
{
"type": "image_url",
"image_url": {
"url": (
f"data:{block['mime_type']};base64,{b64_image}"
)
},
}
)
else:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] does not match OpenAI, "
f"Anthropic, Bedrock Converse, or VertexAI format. Full "
f"content block:\n\n{block}"
)
message.content = content # type: ignore[assignment]
updated_messages.extend([message, *tool_messages])
return updated_messages
_OPTIONAL_ANTHROPIC_KEYS = ("cache_control", "is_error")
def _format_contents_as_anthropic(
messages: Sequence[BaseMessage], *, text: Literal["string", "block"]
) -> List[BaseMessage]:
"""Mutates messages so their contents match Anthropic messages API."""
updated_messages: List = []
for i, message in enumerate(messages):
if isinstance(message, ToolMessage):
tool_result_block = {
"type": "tool_result",
"content": message.content,
"tool_use_id": message.tool_call_id,
"is_error": message.status == "error",
}
if updated_messages and isinstance(updated_messages[-1], HumanMessage):
if isinstance(updated_messages[-1].content, str):
updated_messages[-1].content = [
{"type": "text", "text": updated_messages[-1].content}
]
updated_messages[-1].content.append(tool_result_block)
else:
updated_messages.append(HumanMessage([tool_result_block]))
continue
elif not message.content:
message.content = "" if text == "string" else []
elif isinstance(message.content, str):
if text == "string":
pass
else:
message.content = [{"type": "text", "text": message.content}]
else:
if text == "string" and all(
isinstance(block, str)
or (block.get("type") == "text" and "cache_control" not in block)
for block in message.content
):
message.content = "\n".join(
block if isinstance(block, str) else block["text"]
for block in message.content
)
else:
content = []
for j, block in enumerate(message.content):
# OpenAI format
if isinstance(block, str):
content.append({"type": "text", "text": block})
elif block.get("type") == "text":
block_extra = {
k: block[k] for k in _OPTIONAL_ANTHROPIC_KEYS if k in block
}
if missing := [k for k in ("text",) if k not in block]:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': 'text' "
f"but is missing expected key(s) "
f"{missing}. Full content block:\n\n{block}"
)
content.append(
{"type": "text", "text": block["text"], **block_extra}
)
elif block.get("type") == "image_url":
if missing := [k for k in ("image_url",) if k not in block]:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': 'image_url' "
f"but is missing expected key(s) "
f"{missing}. Full content block:\n\n{block}"
)
content.append(
{**_openai_image_to_anthropic(block), **block_extra}
)
# Anthropic and Bedrock converse format
elif (block.get("type") == "image") or "image" in block:
# Anthropic
if source := block.get("source"):
if missing := [
k
for k in ("media_type", "type", "data")
if k not in source
]:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': 'image' "
f"but 'source' is missing expected key(s) "
f"{missing}. Full content block:\n\n{block}"
)
content.append(
{
"type": "image",
"source": block["source"],
**block_extra,
}
)
# Bedrock converse
elif image := block.get("image"):
if missing := [
k for k in ("source", "format") if k not in image
]:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has key 'image', "
f"but 'image' is missing expected key(s) "
f"{missing}. Full content block:\n\n{block}"
)
content.append(
{
**_bedrock_converse_image_to_anthropic(
block["image"]
),
**block_extra,
}
)
else:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': 'image' "
f"but does not have a 'source' or 'image' key. Full "
f"content block:\n\n{block}"
)
elif block.get("type") == "tool_use":
if missing := [
k for k in ("id", "name", "input") if k not in block
]:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': 'tool_use', "
f"but is missing expected key(s) "
f"{missing}. Full content block:\n\n{block}"
)
content.append(
{
"type": "tool_use",
"name": block["name"],
"id": block["id"],
"input": block["input"],
**block_extra,
}
)
if not any(
tool_call["id"] == block["id"]
for tool_call in cast(AIMessage, message).tool_calls
):
cast(AIMessage, message).tool_calls.append(
create_tool_call(
name=block["name"],
id=block["id"],
args=block["input"],
)
)
elif block.get("type") == "tool_result":
if missing := [
k for k in ("content", "tool_use_id") if k not in block
]:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': "
f"'tool_result', but is missing expected key(s) "
f"{missing}. Full content block:\n\n{block}"
)
content.append(
{
"type": "tool_result",
"content": block["content"],
"tool_use_id": block["tool_use_id"],
**block_extra,
}
)
elif (block.get("type") == "json") or "json" in block:
if "json" not in block:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': 'json' "
f"but does not have a 'json' key. Full "
f"content block:\n\n{block}"
)
content.append(
{
"type": "text",
"text": json.dumps(block["json"]),
**block_extra,
}
)
elif (
block.get("type") == "guard_content"
) or "guard_content" in block:
if (
"guard_content" not in block
or "text" not in block["guard_content"]
):
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': "
f"'guard_content' but does not have a "
f"messages[{i}].content[{j}]['guard_content']['text'] "
f"key. Full content block:\n\n{block}"
)
text = block["guard_content"]["text"]
if isinstance(text, dict):
text = text["text"]
content.append({"type": "text", "text": text, **block_extra})
# VertexAI format
elif block.get("type") == "media":
if missing := [
k for k in ("mime_type", "data") if k not in block
]:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] has 'type': "
f"'media' but does not have key(s) {missing}. Full "
f"content block:\n\n{block}"
)
if "image" not in block["mime_type"]:
raise ValueError(
f"Anthropic messages can only support text and image "
f"data. Received content block with media of type: "
f"{block['mime_type']}"
)
content.append(
{**_vertexai_image_to_anthropic(block), **block_extra}
)
else:
raise ValueError(
f"Unrecognized content block at "
f"messages[{i}].content[{j}] does not match OpenAI, "
f"Anthropic, Bedrock Converse, or VertexAI format. Full "
f"content block:\n\n{block}"
)
message.content = content # type: ignore[assignment]
updated_messages.append(message)
return merge_message_runs(updated_messages)
def _first_max_tokens( def _first_max_tokens(
messages: Sequence[BaseMessage], messages: Sequence[BaseMessage],
*, *,
@ -1012,3 +1641,59 @@ def _is_message_type(
types_types = tuple(t for t in types if isinstance(t, type)) types_types = tuple(t for t in types if isinstance(t, type))
return message.type in types_str or isinstance(message, types_types) return message.type in types_str or isinstance(message, types_types)
def _bytes_to_b64_str(bytes_: bytes) -> str:
return base64.b64encode(bytes_).decode("utf-8")
def _openai_image_to_anthropic(image: dict) -> Dict:
"""
Formats an image of format data:image/jpeg;base64,{b64_string}
to a dict for anthropic api
{
"type": "base64",
"media_type": "image/jpeg",
"data": "/9j/4AAQSkZJRg...",
}
And throws an error if it's not a b64 image
"""
regex = r"^data:(?P<media_type>image/.+);base64,(?P<data>.+)$"
match = re.match(regex, image["image_url"])
if match is None:
raise ValueError(
"Anthropic only supports base64-encoded images currently."
" Example: data:image/png;base64,'/9j/4AAQSk'..."
)
return {
"type": "image",
"source": {
"type": "base64",
"media_type": match.group("media_type"),
"data": match.group("data"),
},
}
def _bedrock_converse_image_to_anthropic(image: dict) -> dict:
return {
"type": "image",
"source": {
"media_type": f"image/{image['format']}",
"type": "base64",
"data": _bytes_to_b64_str(image["source"]["bytes"]),
},
}
def _vertexai_image_to_anthropic(image: dict) -> dict:
return {
"type": "image",
"source": {
"media_type": image["mime_type"],
"type": "base64",
"data": _bytes_to_b64_str(image["data"]),
},
}

View File

@ -13,8 +13,10 @@ from langchain_core.messages import (
ToolMessage, ToolMessage,
) )
from langchain_core.messages.utils import ( from langchain_core.messages.utils import (
_bytes_to_b64_str,
convert_to_messages, convert_to_messages,
filter_messages, filter_messages,
format_content_as,
merge_message_runs, merge_message_runs,
trim_messages, trim_messages,
) )
@ -556,3 +558,222 @@ def test_convert_to_messages() -> None:
@pytest.mark.xfail(reason="AI message does not support refusal key yet.") @pytest.mark.xfail(reason="AI message does not support refusal key yet.")
def test_convert_to_messages_openai_refusal() -> None: def test_convert_to_messages_openai_refusal() -> None:
convert_to_messages([{"role": "assistant", "refusal": "9.1"}]) convert_to_messages([{"role": "assistant", "refusal": "9.1"}])
def create_base64_image(format: str = "jpeg") -> str:
return f"" # noqa: E501
def test_format_content_as_single_message() -> None:
message = HumanMessage(content="Hello")
result = format_content_as(message, format="openai", text="string")
assert isinstance(result, BaseMessage)
assert result.content == "Hello"
def test_format_content_as_multiple_messages() -> None:
messages = [
SystemMessage(content="System message"),
HumanMessage(content="Human message"),
AIMessage(content="AI message"),
]
result = format_content_as(messages, format="openai", text="string")
assert isinstance(result, list)
assert len(result) == 3
assert all(isinstance(msg, BaseMessage) for msg in result)
assert [msg.content for msg in result] == [
"System message",
"Human message",
"AI message",
]
def test_format_content_as_openai_string() -> None:
messages = [
HumanMessage(
content=[
{"type": "text", "text": "Hello"},
{"type": "text", "text": "World"},
]
),
AIMessage(
content=[{"type": "text", "text": "Hi"}, {"type": "text", "text": "there"}]
),
]
result = format_content_as(messages, format="openai", text="string")
assert [msg.content for msg in result] == ["Hello\nWorld", "Hi\nthere"]
def test_format_content_as_openai_block() -> None:
messages = [
HumanMessage(content="Hello"),
AIMessage(content="Hi there"),
]
result = format_content_as(messages, format="openai", text="block")
assert [msg.content for msg in result] == [
[{"type": "text", "text": "Hello"}],
[{"type": "text", "text": "Hi there"}],
]
def test_format_content_as_anthropic_string() -> None:
messages = [
HumanMessage(
content=[
{"type": "text", "text": "Hello"},
{"type": "text", "text": "World"},
]
),
AIMessage(
content=[{"type": "text", "text": "Hi"}, {"type": "text", "text": "there"}]
),
]
result = format_content_as(messages, format="anthropic", text="string")
assert [msg.content for msg in result] == ["Hello\nWorld", "Hi\nthere"]
def test_format_content_as_anthropic_block() -> None:
messages = [
HumanMessage(content="Hello"),
AIMessage(content="Hi there"),
]
result = format_content_as(messages, format="anthropic", text="block")
assert [msg.content for msg in result] == [
[{"type": "text", "text": "Hello"}],
[{"type": "text", "text": "Hi there"}],
]
def test_format_content_as_invalid_format() -> None:
with pytest.raises(ValueError, match="Unrecognized format="):
format_content_as(
[HumanMessage(content="Hello")], format="invalid", text="string"
)
def test_format_content_as_openai_image() -> None:
base64_image = create_base64_image()
messages = [
HumanMessage(
content=[
{"type": "text", "text": "Here's an image:"},
{"type": "image_url", "image_url": {"url": base64_image}},
]
)
]
result = format_content_as(messages, format="openai", text="block")
assert result[0].content[1]["type"] == "image_url"
assert result[0].content[1]["image_url"]["url"] == base64_image
def test_format_content_as_anthropic_image() -> None:
base64_image = create_base64_image()
messages = [
HumanMessage(
content=[
{"type": "text", "text": "Here's an image:"},
{"type": "image_url", "image_url": base64_image},
]
)
]
result = format_content_as(messages, format="anthropic", text="block")
assert result[0].content[1]["type"] == "image"
assert result[0].content[1]["source"]["type"] == "base64"
assert result[0].content[1]["source"]["media_type"] == "image/jpeg"
def test_format_content_as_tool_message() -> None:
tool_message = ToolMessage(content="Tool result", tool_call_id="123")
result = format_content_as([tool_message], format="openai", text="block")
assert isinstance(result[0], ToolMessage)
assert result[0].content == [{"type": "text", "text": "Tool result"}]
assert result[0].tool_call_id == "123"
def test_format_content_as_tool_use() -> None:
messages = [
AIMessage(
content=[
{"type": "tool_use", "id": "123", "name": "calculator", "input": "2+2"}
]
)
]
result = format_content_as(messages, format="openai", text="block")
assert result[0].tool_calls[0]["id"] == "123"
assert result[0].tool_calls[0]["name"] == "calculator"
assert result[0].tool_calls[0]["args"] == "2+2"
def test_format_content_as_json() -> None:
json_data = {"key": "value"}
messages = [HumanMessage(content=[{"type": "json", "json": json_data}])]
result = format_content_as(messages, format="openai", text="block")
assert result[0].content[0]["type"] == "text"
assert json.loads(result[0].content[0]["text"]) == json_data
def test_format_content_as_guard_content() -> None:
messages = [
HumanMessage(
content=[
{
"type": "guard_content",
"guard_content": {"text": "Protected content"},
}
]
)
]
result = format_content_as(messages, format="openai", text="block")
assert result[0].content[0]["type"] == "text"
assert result[0].content[0]["text"] == "Protected content"
def test_format_content_as_vertexai_image() -> None:
messages = [
HumanMessage(
content=[
{"type": "media", "mime_type": "image/jpeg", "data": b"image_bytes"}
]
)
]
result = format_content_as(messages, format="openai", text="block")
assert result[0].content[0]["type"] == "image_url"
assert (
result[0].content[0]["image_url"]["url"]
== f"data:image/jpeg;base64,{_bytes_to_b64_str(b'image_bytes')}"
)
def test_format_content_as_invalid_block() -> None:
messages = [HumanMessage(content=[{"type": "invalid", "foo": "bar"}])]
with pytest.raises(ValueError, match="Unrecognized content block"):
format_content_as(messages, format="openai", text="block")
with pytest.raises(ValueError, match="Unrecognized content block"):
format_content_as(messages, format="anthropic", text="block")
def test_format_content_as_empty_message() -> None:
result = format_content_as(HumanMessage(content=""), format="openai", text="string")
assert result.content == ""
def test_format_content_as_empty_list() -> None:
result = format_content_as([], format="openai", text="string")
assert result == []
def test_format_content_as_mixed_content_types() -> None:
messages = [
HumanMessage(
content=[
"Text message",
{"type": "text", "text": "Structured text"},
{"type": "image_url", "image_url": create_base64_image()},
]
)
]
result = format_content_as(messages, format="openai", text="block")
assert len(result[0].content) == 3
assert isinstance(result[0].content[0], dict)
assert isinstance(result[0].content[1], dict)
assert isinstance(result[0].content[2], dict)