mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-30 19:49:09 +00:00
Allow clearing cache and fix gptcache (#3493)
This PR * Adds `clear` method for `BaseCache` and implements it for various caches * Adds the default `init_func=None` and fixes gptcache integtest * Since right now integtest is not running in CI, I've verified the changes by running `docs/modules/models/llms/examples/llm_caching.ipynb` (until proper e2e integtest is done in CI)
This commit is contained in:
parent
83e871f1ff
commit
4a246e2fd6
6
.gitignore
vendored
6
.gitignore
vendored
@ -144,4 +144,8 @@ wandb/
|
||||
/.ruff_cache/
|
||||
|
||||
*.pkl
|
||||
*.bin
|
||||
*.bin
|
||||
|
||||
# integration test artifacts
|
||||
data_map*
|
||||
\[('_type', 'fake'), ('stop', None)]
|
@ -785,7 +785,9 @@
|
||||
"id": "9df0dab8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
"source": [
|
||||
"!rm .langchain.db sqlite.db"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
@ -1,7 +1,7 @@
|
||||
"""Beta Feature: base interface for cache."""
|
||||
import json
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, cast
|
||||
|
||||
from sqlalchemy import Column, Integer, String, create_engine, select
|
||||
from sqlalchemy.engine.base import Engine
|
||||
@ -28,6 +28,10 @@ class BaseCache(ABC):
|
||||
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
||||
"""Update cache based on prompt and llm_string."""
|
||||
|
||||
@abstractmethod
|
||||
def clear(self, **kwargs: Any) -> None:
|
||||
"""Clear cache that can take additional keyword arguments."""
|
||||
|
||||
|
||||
class InMemoryCache(BaseCache):
|
||||
"""Cache that stores things in memory."""
|
||||
@ -44,6 +48,10 @@ class InMemoryCache(BaseCache):
|
||||
"""Update cache based on prompt and llm_string."""
|
||||
self._cache[(prompt, llm_string)] = return_val
|
||||
|
||||
def clear(self, **kwargs: Any) -> None:
|
||||
"""Clear cache."""
|
||||
self._cache = {}
|
||||
|
||||
|
||||
Base = declarative_base()
|
||||
|
||||
@ -61,7 +69,7 @@ class FullLLMCache(Base): # type: ignore
|
||||
class SQLAlchemyCache(BaseCache):
|
||||
"""Cache that uses SQAlchemy as a backend."""
|
||||
|
||||
def __init__(self, engine: Engine, cache_schema: Any = FullLLMCache):
|
||||
def __init__(self, engine: Engine, cache_schema: Type[FullLLMCache] = FullLLMCache):
|
||||
"""Initialize by creating all tables."""
|
||||
self.engine = engine
|
||||
self.cache_schema = cache_schema
|
||||
@ -76,20 +84,26 @@ class SQLAlchemyCache(BaseCache):
|
||||
.order_by(self.cache_schema.idx)
|
||||
)
|
||||
with Session(self.engine) as session:
|
||||
generations = [Generation(text=row[0]) for row in session.execute(stmt)]
|
||||
if len(generations) > 0:
|
||||
return generations
|
||||
rows = session.execute(stmt).fetchall()
|
||||
if rows:
|
||||
return [Generation(text=row[0]) for row in rows]
|
||||
return None
|
||||
|
||||
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
||||
"""Look up based on prompt and llm_string."""
|
||||
for i, generation in enumerate(return_val):
|
||||
item = self.cache_schema(
|
||||
prompt=prompt, llm=llm_string, response=generation.text, idx=i
|
||||
)
|
||||
with Session(self.engine) as session, session.begin():
|
||||
"""Update based on prompt and llm_string."""
|
||||
items = [
|
||||
self.cache_schema(prompt=prompt, llm=llm_string, response=gen.text, idx=i)
|
||||
for i, gen in enumerate(return_val)
|
||||
]
|
||||
with Session(self.engine) as session, session.begin():
|
||||
for item in items:
|
||||
session.merge(item)
|
||||
|
||||
def clear(self, **kwargs: Any) -> None:
|
||||
"""Clear cache."""
|
||||
with Session(self.engine) as session:
|
||||
session.execute(self.cache_schema.delete())
|
||||
|
||||
|
||||
class SQLiteCache(SQLAlchemyCache):
|
||||
"""Cache that uses SQLite as a backend."""
|
||||
@ -139,19 +153,26 @@ class RedisCache(BaseCache):
|
||||
for i, generation in enumerate(return_val):
|
||||
self.redis.set(self._key(prompt, llm_string, i), generation.text)
|
||||
|
||||
def clear(self, **kwargs: Any) -> None:
|
||||
"""Clear cache. If `asynchronous` is True, flush asynchronously."""
|
||||
asynchronous = kwargs.get("asynchronous", False)
|
||||
self.redis.flushdb(asynchronous=asynchronous, **kwargs)
|
||||
|
||||
|
||||
class GPTCache(BaseCache):
|
||||
"""Cache that uses GPTCache as a backend."""
|
||||
|
||||
def __init__(self, init_func: Callable[[Any], None]):
|
||||
"""Initialize by passing in the `init` GPTCache func
|
||||
def __init__(self, init_func: Optional[Callable[[Any], None]] = None):
|
||||
"""Initialize by passing in init function (default: `None`).
|
||||
|
||||
Args:
|
||||
init_func (Callable[[Any], None]): init `GPTCache` function
|
||||
init_func (Optional[Callable[[Any], None]]): init `GPTCache` function
|
||||
(default: `None`)
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
# Initialize GPTCache with a custom init function
|
||||
import gptcache
|
||||
from gptcache.processor.pre import get_prompt
|
||||
from gptcache.manager.factory import get_data_manager
|
||||
@ -180,7 +201,8 @@ class GPTCache(BaseCache):
|
||||
"Could not import gptcache python package. "
|
||||
"Please install it with `pip install gptcache`."
|
||||
)
|
||||
self.init_gptcache_func: Callable[[Any], None] = init_func
|
||||
|
||||
self.init_gptcache_func: Optional[Callable[[Any], None]] = init_func
|
||||
self.gptcache_dict: Dict[str, Any] = {}
|
||||
|
||||
@staticmethod
|
||||
@ -205,11 +227,19 @@ class GPTCache(BaseCache):
|
||||
|
||||
When the corresponding llm model cache does not exist, it will be created."""
|
||||
from gptcache import Cache
|
||||
from gptcache.manager.factory import get_data_manager
|
||||
from gptcache.processor.pre import get_prompt
|
||||
|
||||
_gptcache = self.gptcache_dict.get(llm_string, None)
|
||||
if _gptcache is None:
|
||||
_gptcache = Cache()
|
||||
self.init_gptcache_func(_gptcache)
|
||||
if self.init_gptcache_func is not None:
|
||||
self.init_gptcache_func(_gptcache)
|
||||
else:
|
||||
_gptcache.init(
|
||||
pre_embedding_func=get_prompt,
|
||||
data_manager=get_data_manager(data_path=llm_string),
|
||||
)
|
||||
self.gptcache_dict[llm_string] = _gptcache
|
||||
return _gptcache
|
||||
|
||||
@ -220,7 +250,7 @@ class GPTCache(BaseCache):
|
||||
"""
|
||||
from gptcache.adapter.adapter import adapt
|
||||
|
||||
_gptcache = self.gptcache_dict.get(llm_string)
|
||||
_gptcache = self.gptcache_dict.get(llm_string, None)
|
||||
if _gptcache is None:
|
||||
return None
|
||||
res = adapt(
|
||||
@ -234,7 +264,10 @@ class GPTCache(BaseCache):
|
||||
|
||||
@staticmethod
|
||||
def _update_cache_callback(
|
||||
llm_data: RETURN_VAL_TYPE, update_cache_func: Callable[[Any], None]
|
||||
llm_data: RETURN_VAL_TYPE,
|
||||
update_cache_func: Callable[[Any], None],
|
||||
*args: Any,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Save the `llm_data` to cache storage"""
|
||||
handled_data = json.dumps([generation.dict() for generation in llm_data])
|
||||
@ -260,3 +293,13 @@ class GPTCache(BaseCache):
|
||||
cache_skip=True,
|
||||
prompt=prompt,
|
||||
)
|
||||
|
||||
def clear(self, **kwargs: Any) -> None:
|
||||
"""Clear cache."""
|
||||
from gptcache import Cache
|
||||
|
||||
for gptcache_instance in self.gptcache_dict.values():
|
||||
gptcache_instance = cast(Cache, gptcache_instance)
|
||||
gptcache_instance.flush()
|
||||
|
||||
self.gptcache_dict.clear()
|
||||
|
@ -235,4 +235,5 @@ class ConversationEntityMemory(BaseChatMemory):
|
||||
def clear(self) -> None:
|
||||
"""Clear memory contents."""
|
||||
self.chat_memory.clear()
|
||||
self.entity_cache.clear()
|
||||
self.entity_store.clear()
|
||||
|
67
tests/integration_tests/cache/test_gptcache.py
vendored
67
tests/integration_tests/cache/test_gptcache.py
vendored
@ -1,61 +1,48 @@
|
||||
import os
|
||||
from typing import Any, Callable, Optional
|
||||
|
||||
import pytest
|
||||
|
||||
import langchain
|
||||
from langchain.cache import GPTCache
|
||||
from langchain.schema import Generation, LLMResult
|
||||
from langchain.schema import Generation
|
||||
from tests.unit_tests.llms.fake_llm import FakeLLM
|
||||
|
||||
try:
|
||||
import gptcache # noqa: F401
|
||||
from gptcache import Cache # noqa: F401
|
||||
from gptcache.manager.factory import get_data_manager
|
||||
from gptcache.processor.pre import get_prompt
|
||||
|
||||
gptcache_installed = True
|
||||
except ImportError:
|
||||
gptcache_installed = False
|
||||
|
||||
|
||||
def init_gptcache_map(cache_obj: Cache) -> None:
|
||||
i = getattr(init_gptcache_map, "_i", 0)
|
||||
cache_path = f"data_map_{i}.txt"
|
||||
if os.path.isfile(cache_path):
|
||||
os.remove(cache_path)
|
||||
cache_obj.init(
|
||||
pre_embedding_func=get_prompt,
|
||||
data_manager=get_data_manager(data_path=cache_path),
|
||||
)
|
||||
init_gptcache_map._i = i + 1 # type: ignore
|
||||
|
||||
|
||||
@pytest.mark.skipif(not gptcache_installed, reason="gptcache not installed")
|
||||
def test_gptcache_map_caching() -> None:
|
||||
"""Test gptcache caching behavior."""
|
||||
|
||||
from gptcache import Cache
|
||||
from gptcache.manager.factory import get_data_manager
|
||||
from gptcache.processor.pre import get_prompt
|
||||
|
||||
i = 0
|
||||
file_prefix = "data_map"
|
||||
|
||||
def init_gptcache_map(cache_obj: Cache) -> None:
|
||||
nonlocal i
|
||||
cache_path = f"{file_prefix}_{i}.txt"
|
||||
if os.path.isfile(cache_path):
|
||||
os.remove(cache_path)
|
||||
cache_obj.init(
|
||||
pre_embedding_func=get_prompt,
|
||||
data_manager=get_data_manager(data_path=cache_path),
|
||||
)
|
||||
i += 1
|
||||
|
||||
langchain.llm_cache = GPTCache(init_gptcache_map)
|
||||
|
||||
@pytest.mark.parametrize("init_func", [None, init_gptcache_map])
|
||||
def test_gptcache_caching(init_func: Optional[Callable[[Any], None]]) -> None:
|
||||
"""Test gptcache default caching behavior."""
|
||||
langchain.llm_cache = GPTCache(init_func)
|
||||
llm = FakeLLM()
|
||||
params = llm.dict()
|
||||
params["stop"] = None
|
||||
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
||||
langchain.llm_cache.update("foo", llm_string, [Generation(text="fizz")])
|
||||
output = llm.generate(["foo", "bar", "foo"])
|
||||
expected_cache_output = [Generation(text="foo")]
|
||||
cache_output = langchain.llm_cache.lookup("bar", llm_string)
|
||||
assert cache_output == expected_cache_output
|
||||
langchain.llm_cache = None
|
||||
expected_generations = [
|
||||
[Generation(text="fizz")],
|
||||
[Generation(text="foo")],
|
||||
[Generation(text="fizz")],
|
||||
]
|
||||
expected_output = LLMResult(
|
||||
generations=expected_generations,
|
||||
llm_output=None,
|
||||
)
|
||||
assert output == expected_output
|
||||
_ = llm.generate(["foo", "bar", "foo"])
|
||||
cache_output = langchain.llm_cache.lookup("foo", llm_string)
|
||||
assert cache_output == [Generation(text="fizz")]
|
||||
|
||||
langchain.llm_cache.clear()
|
||||
assert langchain.llm_cache.lookup("bar", llm_string) is None
|
||||
|
Loading…
Reference in New Issue
Block a user