diff --git a/docs/extras/use_cases/question_answering/index.mdx b/docs/extras/use_cases/question_answering/index.mdx index 8b3f4f1dc70..bd7a7074f94 100644 --- a/docs/extras/use_cases/question_answering/index.mdx +++ b/docs/extras/use_cases/question_answering/index.mdx @@ -65,7 +65,7 @@ index.query(question) -Of course, some users do not wnat this level of abstraction. +Of course, some users do not want this level of abstraction. Below, we will discuss each stage in more detail. @@ -113,13 +113,13 @@ Here are the three pieces together: #### 1.2.1 Integrations -`Data Loaders` +`Document Loaders` * Browse the > 120 data loader integrations [here](https://integrations.langchain.com/). * See further documentation on loaders [here](https://python.langchain.com/docs/modules/data_connection/document_loaders/). -`Data Transformers` +`Document Transformers` * All can ingest loaded `Documents` and process them (e.g., split). @@ -133,7 +133,7 @@ Here are the three pieces together: #### 1.2.2 Retaining metadata -`Context-aware splitters` keep the location or "context" of each split in the origional `Document`: +`Context-aware splitters` keep the location ("context") of each split in the origional `Document`: * [Markdown files](https://python.langchain.com/docs/use_cases/question_answering/document-context-aware-QA) * [Code (py or js)](https://python.langchain.com/docs/modules/data_connection/document_loaders/integrations/source_code) @@ -171,7 +171,7 @@ For example, SVMs (see thread [here](https://twitter.com/karpathy/status/1647025 LangChain [has many retrievers](https://python.langchain.com/docs/modules/data_connection/retrievers/) including, but not limited to, vectorstores. -All retrievers implement some common, useful methods, such as `get_relevant_documents()`. +All retrievers implement some common methods, such as `get_relevant_documents()`. ```python @@ -222,7 +222,7 @@ len(unique_docs) ### 3.1 Getting started -Distill the retried documents into an answer using an LLM (e.g., `gpt-3.5-turbo`) with `RetrievalQA` chain. +Distill the retrieved documents into an answer using an LLM (e.g., `gpt-3.5-turbo`) with `RetrievalQA` chain. ```python @@ -247,9 +247,9 @@ qa_chain({"query": question}) `LLMs` -* Browse the > 55 model integrations [here](https://integrations.langchain.com/). +* Browse the > 55 LLM integrations [here](https://integrations.langchain.com/). -* See further documentation on vectorstores [here](https://python.langchain.com/docs/modules/model_io/models/). +* See further documentation on LLMs [here](https://python.langchain.com/docs/modules/model_io/models/). #### 3.2.2 Running LLMs locally @@ -355,7 +355,7 @@ result -#### 3.2.5 Customizing how pass retrieved documents to the LLM +#### 3.2.5 Customizing retrieved docs in the LLM prompt Retrieved documents can be fed to an LLM for answer distillation in a few different ways.