mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-07 22:11:51 +00:00
Format Templates (#12396)
This commit is contained in:
@@ -1,40 +1,46 @@
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
import json
|
||||
from typing import List, Optional
|
||||
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.utils.openai_functions import convert_pydantic_to_openai_function
|
||||
from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser
|
||||
import json
|
||||
|
||||
|
||||
template = """A article will be passed to you. Extract from it all papers that are mentioned by this article.
|
||||
|
||||
Do not extract the name of the article itself. If no papers are mentioned that's fine - you don't need to extract any! Just return an empty list.
|
||||
|
||||
Do not make up or guess ANY extra information. Only extract what exactly is in the text."""
|
||||
Do not make up or guess ANY extra information. Only extract what exactly is in the text.""" # noqa: E501
|
||||
|
||||
prompt = ChatPromptTemplate.from_messages([("system", template), ("human", "{input}")])
|
||||
|
||||
prompt = ChatPromptTemplate.from_messages([
|
||||
("system", template),
|
||||
("human", "{input}")
|
||||
])
|
||||
|
||||
# Function output schema
|
||||
class Paper(BaseModel):
|
||||
"""Information about papers mentioned."""
|
||||
|
||||
title: str
|
||||
author: Optional[str]
|
||||
|
||||
|
||||
class Info(BaseModel):
|
||||
"""Information to extract"""
|
||||
|
||||
papers: List[Paper]
|
||||
|
||||
|
||||
# Function definition
|
||||
model = ChatOpenAI()
|
||||
function = [convert_pydantic_to_openai_function(Info)]
|
||||
chain = prompt | model.bind(
|
||||
functions=function, function_call={"name": "Info"}
|
||||
) | (lambda x: json.loads(x.additional_kwargs['function_call']['arguments'])['papers'])
|
||||
chain = (
|
||||
prompt
|
||||
| model.bind(functions=function, function_call={"name": "Info"})
|
||||
| (
|
||||
lambda x: json.loads(x.additional_kwargs["function_call"]["arguments"])[
|
||||
"papers"
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
# chain = prompt | model.bind(
|
||||
# functions=function, function_call={"name": "Info"}
|
||||
|
Reference in New Issue
Block a user