mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-05 04:55:14 +00:00
Format Templates (#12396)
This commit is contained in:
@@ -1,15 +1,15 @@
|
||||
from typing import List, Tuple
|
||||
from langchain.schema.messages import HumanMessage, AIMessage
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.utilities.tavily_search import TavilySearchAPIWrapper
|
||||
from langchain.tools.tavily_search import TavilySearchResults
|
||||
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain.tools.render import format_tool_to_openai_function
|
||||
from langchain.agents.format_scratchpad import format_to_openai_functions
|
||||
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
|
||||
from langchain.schema.messages import AIMessage, HumanMessage
|
||||
from langchain.tools.render import format_tool_to_openai_function
|
||||
from langchain.tools.tavily_search import TavilySearchResults
|
||||
from langchain.utilities.tavily_search import TavilySearchAPIWrapper
|
||||
|
||||
# Fake Tool
|
||||
search = TavilySearchAPIWrapper()
|
||||
@@ -18,17 +18,21 @@ tavily_tool = TavilySearchResults(api_wrapper=search)
|
||||
tools = [tavily_tool]
|
||||
|
||||
llm = ChatOpenAI(temperature=0)
|
||||
prompt = ChatPromptTemplate.from_messages([
|
||||
("system", "You are very powerful assistant, but bad at calculating lengths of words."),
|
||||
MessagesPlaceholder(variable_name="chat_history"),
|
||||
("user", "{input}"),
|
||||
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
||||
])
|
||||
|
||||
llm_with_tools = llm.bind(
|
||||
functions=[format_tool_to_openai_function(t) for t in tools]
|
||||
prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
(
|
||||
"system",
|
||||
"You are very powerful assistant, but bad at calculating lengths of words.",
|
||||
),
|
||||
MessagesPlaceholder(variable_name="chat_history"),
|
||||
("user", "{input}"),
|
||||
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
||||
]
|
||||
)
|
||||
|
||||
llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])
|
||||
|
||||
|
||||
def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
||||
buffer = []
|
||||
for human, ai in chat_history:
|
||||
@@ -37,16 +41,25 @@ def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
||||
return buffer
|
||||
|
||||
|
||||
agent = {
|
||||
"input": lambda x: x["input"],
|
||||
"chat_history": lambda x: _format_chat_history(x['chat_history']),
|
||||
"agent_scratchpad": lambda x: format_to_openai_functions(x['intermediate_steps']),
|
||||
} | prompt | llm_with_tools | OpenAIFunctionsAgentOutputParser()
|
||||
agent = (
|
||||
{
|
||||
"input": lambda x: x["input"],
|
||||
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
|
||||
"agent_scratchpad": lambda x: format_to_openai_functions(
|
||||
x["intermediate_steps"]
|
||||
),
|
||||
}
|
||||
| prompt
|
||||
| llm_with_tools
|
||||
| OpenAIFunctionsAgentOutputParser()
|
||||
)
|
||||
|
||||
|
||||
class AgentInput(BaseModel):
|
||||
input: str
|
||||
chat_history: List[Tuple[str, str]]
|
||||
|
||||
|
||||
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True).with_types(
|
||||
input_type=AgentInput
|
||||
)
|
||||
|
Reference in New Issue
Block a user