Format Templates (#12396)

This commit is contained in:
Erick Friis
2023-10-26 19:44:30 -07:00
committed by GitHub
parent 25c98dbba9
commit 4b16601d33
59 changed files with 800 additions and 441 deletions

View File

@@ -1,33 +1,36 @@
# Load
import uuid
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser
from langchain.vectorstores import Chroma
from langchain.storage import InMemoryStore
from unstructured.partition.pdf import partition_pdf
from langchain.schema.document import Document
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.schema.document import Document
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
from langchain.storage import InMemoryStore
from langchain.vectorstores import Chroma
from unstructured.partition.pdf import partition_pdf
# Path to docs
path = "docs"
raw_pdf_elements = partition_pdf(filename=path+"LLaMA2.pdf",
# Unstructured first finds embedded image blocks
extract_images_in_pdf=False,
# Use layout model (YOLOX) to get bounding boxes (for tables) and find titles
# Titles are any sub-section of the document
infer_table_structure=True,
# Post processing to aggregate text once we have the title
chunking_strategy="by_title",
# Chunking params to aggregate text blocks
# Attempt to create a new chunk 3800 chars
# Attempt to keep chunks > 2000 chars
max_characters=4000,
new_after_n_chars=3800,
combine_text_under_n_chars=2000,
image_output_dir_path=path)
raw_pdf_elements = partition_pdf(
filename=path + "LLaMA2.pdf",
# Unstructured first finds embedded image blocks
extract_images_in_pdf=False,
# Use layout model (YOLOX) to get bounding boxes (for tables) and find titles
# Titles are any sub-section of the document
infer_table_structure=True,
# Post processing to aggregate text once we have the title
chunking_strategy="by_title",
# Chunking params to aggregate text blocks
# Attempt to create a new chunk 3800 chars
# Attempt to keep chunks > 2000 chars
max_characters=4000,
new_after_n_chars=3800,
combine_text_under_n_chars=2000,
image_output_dir_path=path,
)
# Categorize by type
tables = []
@@ -40,26 +43,23 @@ for element in raw_pdf_elements:
# Summarize
prompt_text="""You are an assistant tasked with summarizing tables and text. \
prompt_text = """You are an assistant tasked with summarizing tables and text. \
Give a concise summary of the table or text. Table or text chunk: {element} """
prompt = ChatPromptTemplate.from_template(prompt_text)
model = ChatOpenAI(temperature=0,model="gpt-4")
summarize_chain = {"element": lambda x:x} | prompt | model | StrOutputParser()
prompt = ChatPromptTemplate.from_template(prompt_text)
model = ChatOpenAI(temperature=0, model="gpt-4")
summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser()
# Apply
table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5})
# To save time / cost, only do text summaries if chunk sizes are large
# text_summaries = summarize_chain.batch(texts, {"max_concurrency": 5})
# We can just assign text_summaries to the raw texts
# We can just assign text_summaries to the raw texts
text_summaries = texts
# Use multi vector retriever
# The vectorstore to use to index the child chunks
vectorstore = Chroma(
collection_name="summaries",
embedding_function=OpenAIEmbeddings()
)
vectorstore = Chroma(collection_name="summaries", embedding_function=OpenAIEmbeddings())
# The storage layer for the parent documents
store = InMemoryStore()
@@ -67,20 +67,26 @@ id_key = "doc_id"
# The retriever (empty to start)
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
docstore=store,
vectorstore=vectorstore,
docstore=store,
id_key=id_key,
)
# Add texts
doc_ids = [str(uuid.uuid4()) for _ in texts]
summary_texts = [Document(page_content=s,metadata={id_key: doc_ids[i]}) for i, s in enumerate(text_summaries)]
summary_texts = [
Document(page_content=s, metadata={id_key: doc_ids[i]})
for i, s in enumerate(text_summaries)
]
retriever.vectorstore.add_documents(summary_texts)
retriever.docstore.mset(list(zip(doc_ids, texts)))
# Add tables
table_ids = [str(uuid.uuid4()) for _ in tables]
summary_tables = [Document(page_content=s,metadata={id_key: table_ids[i]}) for i, s in enumerate(table_summaries)]
summary_tables = [
Document(page_content=s, metadata={id_key: table_ids[i]})
for i, s in enumerate(table_summaries)
]
retriever.vectorstore.add_documents(summary_tables)
retriever.docstore.mset(list(zip(table_ids, tables)))
@@ -90,16 +96,16 @@ retriever.docstore.mset(list(zip(table_ids, tables)))
template = """Answer the question based only on the following context, which can include text and tables:
{context}
Question: {question}
"""
""" # noqa: E501
prompt = ChatPromptTemplate.from_template(template)
# LLM
model = ChatOpenAI(temperature=0,model="gpt-4")
model = ChatOpenAI(temperature=0, model="gpt-4")
# RAG pipeline
chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| model
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| model
| StrOutputParser()
)
)