mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-02 03:26:17 +00:00
Format Templates (#12396)
This commit is contained in:
@@ -1,15 +1,12 @@
|
||||
import os
|
||||
|
||||
from langchain.chains.query_constructor.base import AttributeInfo
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.llms.openai import OpenAI
|
||||
from langchain.retrievers.self_query.base import SelfQueryRetriever
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnablePassthrough, RunnableParallel
|
||||
from langchain.chains.query_constructor.base import AttributeInfo
|
||||
|
||||
from supabase.client import create_client
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||||
from langchain.vectorstores.supabase import SupabaseVectorStore
|
||||
from supabase.client import create_client
|
||||
|
||||
supabase_url = os.environ.get("SUPABASE_URL")
|
||||
supabase_key = os.environ.get("SUPABASE_SERVICE_KEY")
|
||||
@@ -21,7 +18,7 @@ vectorstore = SupabaseVectorStore(
|
||||
client=supabase,
|
||||
embedding=embeddings,
|
||||
table_name="documents",
|
||||
query_name="match_documents"
|
||||
query_name="match_documents",
|
||||
)
|
||||
|
||||
# Adjust this based on the metadata you store in the `metadata` JSON column
|
||||
@@ -51,14 +48,7 @@ document_content_description = "Brief summary of a movie"
|
||||
llm = OpenAI(temperature=0)
|
||||
|
||||
retriever = SelfQueryRetriever.from_llm(
|
||||
llm,
|
||||
vectorstore,
|
||||
document_content_description,
|
||||
metadata_field_info,
|
||||
verbose=True
|
||||
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
|
||||
)
|
||||
|
||||
chain = (
|
||||
RunnableParallel({"query": RunnablePassthrough()})
|
||||
| retriever
|
||||
)
|
||||
chain = RunnableParallel({"query": RunnablePassthrough()}) | retriever
|
||||
|
Reference in New Issue
Block a user