mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-03 12:07:36 +00:00
Format Templates (#12396)
This commit is contained in:
@@ -1,14 +1,19 @@
|
||||
from langchain.chat_models import ChatAnthropic
|
||||
from langchain.tools.render import render_text_description
|
||||
from langchain.agents.format_scratchpad import format_xml
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.retrievers.you import YouRetriever
|
||||
from langchain.agents.agent_toolkits.conversational_retrieval.tool import create_retriever_tool
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from xml_agent.prompts import conversational_prompt, parse_output
|
||||
from langchain.schema import AIMessage, HumanMessage
|
||||
from typing import List, Tuple
|
||||
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.agents.agent_toolkits.conversational_retrieval.tool import (
|
||||
create_retriever_tool,
|
||||
)
|
||||
from langchain.agents.format_scratchpad import format_xml
|
||||
from langchain.chat_models import ChatAnthropic
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.retrievers.you import YouRetriever
|
||||
from langchain.schema import AIMessage, HumanMessage
|
||||
from langchain.tools.render import render_text_description
|
||||
|
||||
from xml_agent.prompts import conversational_prompt, parse_output
|
||||
|
||||
|
||||
def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
||||
buffer = []
|
||||
for human, ai in chat_history:
|
||||
@@ -21,7 +26,9 @@ model = ChatAnthropic(model="claude-2")
|
||||
|
||||
# Fake Tool
|
||||
retriever = YouRetriever(k=5)
|
||||
retriever_tool = create_retriever_tool(retriever, "search", "Use this to search for current events.")
|
||||
retriever_tool = create_retriever_tool(
|
||||
retriever, "search", "Use this to search for current events."
|
||||
)
|
||||
|
||||
tools = [retriever_tool]
|
||||
|
||||
@@ -31,18 +38,25 @@ prompt = conversational_prompt.partial(
|
||||
)
|
||||
llm_with_stop = model.bind(stop=["</tool_input>"])
|
||||
|
||||
agent = {
|
||||
"question": lambda x: x["question"],
|
||||
"agent_scratchpad": lambda x: format_xml(x['intermediate_steps']),
|
||||
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
|
||||
} | prompt | llm_with_stop | parse_output
|
||||
agent = (
|
||||
{
|
||||
"question": lambda x: x["question"],
|
||||
"agent_scratchpad": lambda x: format_xml(x["intermediate_steps"]),
|
||||
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
|
||||
}
|
||||
| prompt
|
||||
| llm_with_stop
|
||||
| parse_output
|
||||
)
|
||||
|
||||
|
||||
class AgentInput(BaseModel):
|
||||
question: str
|
||||
chat_history: List[Tuple[str, str]]
|
||||
|
||||
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True, handle_parsing_errors=True).with_types(
|
||||
input_type=AgentInput
|
||||
)
|
||||
|
||||
agent_executor = AgentExecutor(
|
||||
agent=agent, tools=tools, verbose=True, handle_parsing_errors=True
|
||||
).with_types(input_type=AgentInput)
|
||||
|
||||
agent_executor = agent_executor | (lambda x: x["output"])
|
||||
|
Reference in New Issue
Block a user