mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-15 23:57:21 +00:00
docs: providers
updates 1 (#20256)
- Proviers pages: added missed integrations; fixed format - `mistralai` converted from notebook to .mdx format
This commit is contained in:
parent
15cb1133e7
commit
4c48732f94
@ -1,43 +1,44 @@
|
||||
# Anthropic
|
||||
|
||||
All functionality related to Anthropic models.
|
||||
>[Anthropic](https://www.anthropic.com/) is an AI safety and research company, and is the creator of `Claude`.
|
||||
This page covers all integrations between `Anthropic` models and `LangChain`.
|
||||
|
||||
[Anthropic](https://www.anthropic.com/) is an AI safety and research company, and is the creator of Claude.
|
||||
This page covers all integrations between Anthropic models and LangChain.
|
||||
## Installation and Setup
|
||||
|
||||
## Installation
|
||||
To use `Anthropic` models, you need to install a python package:
|
||||
|
||||
To use Anthropic models, you will need to install the `langchain-anthropic` package.
|
||||
You can do this with the following command:
|
||||
|
||||
```
|
||||
pip install langchain-anthropic
|
||||
```bash
|
||||
pip install -U langchain-anthropic
|
||||
```
|
||||
|
||||
## Environment Setup
|
||||
|
||||
To use Anthropic models, you will need to set the `ANTHROPIC_API_KEY` environment variable.
|
||||
You need to set the `ANTHROPIC_API_KEY` environment variable.
|
||||
You can get an Anthropic API key [here](https://console.anthropic.com/settings/keys)
|
||||
|
||||
## `ChatAnthropic`
|
||||
## LLMs
|
||||
|
||||
`ChatAnthropic` is a subclass of LangChain's `ChatModel`.
|
||||
You can import this wrapper with the following code:
|
||||
### [Legacy] AnthropicLLM
|
||||
|
||||
```
|
||||
from langchain_anthropic import ChatAnthropic
|
||||
model = ChatAnthropic(model='claude-3-opus-20240229')
|
||||
```
|
||||
**NOTE**: `AnthropicLLM` only supports legacy `Claude 2` models.
|
||||
To use the newest `Claude 3` models, please use `ChatAnthropic` instead.
|
||||
|
||||
Read more in the [ChatAnthropic documentation](/docs/integrations/chat/anthropic).
|
||||
|
||||
## [Legacy] `AnthropicLLM`
|
||||
|
||||
`AnthropicLLM` is a subclass of LangChain's `LLM`. It is a wrapper around Anthropic's
|
||||
text-based completion endpoints.
|
||||
See a [usage example](/docs/integrations/llms/anthropic).
|
||||
|
||||
```python
|
||||
from langchain_anthropic import AnthropicLLM
|
||||
|
||||
model = AnthropicLLM(model='claude-2.1')
|
||||
```
|
||||
|
||||
## Chat Models
|
||||
|
||||
### ChatAnthropic
|
||||
|
||||
See a [usage example](/docs/integrations/chat/anthropic).
|
||||
|
||||
```python
|
||||
from langchain_anthropic import ChatAnthropic
|
||||
|
||||
model = ChatAnthropic(model='claude-3-opus-20240229')
|
||||
```
|
||||
|
||||
|
||||
|
@ -268,6 +268,29 @@ See a [usage example](/docs/integrations/memory/aws_dynamodb).
|
||||
from langchain.memory import DynamoDBChatMessageHistory
|
||||
```
|
||||
|
||||
## Graphs
|
||||
|
||||
### Amazon Neptune with Cypher
|
||||
|
||||
See a [usage example](/docs/integrations/graphs/amazon_neptune_open_cypher).
|
||||
|
||||
```python
|
||||
from langchain_community.graphs import NeptuneGraph
|
||||
from langchain_community.graphs import NeptuneAnalyticsGraph
|
||||
from langchain.chains import NeptuneOpenCypherQAChain
|
||||
```
|
||||
|
||||
### Amazon Neptune with SPARQL
|
||||
|
||||
See a [usage example](/docs/integrations/graphs/amazon_neptune_sparql).
|
||||
|
||||
```python
|
||||
from langchain_community.graphs import NeptuneRdfGraph
|
||||
from langchain.chains.graph_qa.neptune_sparql import NeptuneSparqlQAChain
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Callbacks
|
||||
|
||||
### SageMaker Tracking
|
||||
|
@ -317,6 +317,24 @@ from langchain_community.agent_toolkits import PowerBIToolkit
|
||||
from langchain_community.utilities.powerbi import PowerBIDataset
|
||||
```
|
||||
|
||||
|
||||
## Graphs
|
||||
|
||||
### Azure Cosmos DB for Apache Gremlin
|
||||
|
||||
We need to install a python package.
|
||||
|
||||
```bash
|
||||
pip install gremlinpython
|
||||
```
|
||||
|
||||
See a [usage example](/docs/integrations/graphs/azure_cosmosdb_gremlin).
|
||||
|
||||
```python
|
||||
from langchain_community.graphs import GremlinGraph
|
||||
from langchain_community.graphs.graph_document import GraphDocument, Node, Relationship
|
||||
```
|
||||
|
||||
## Utilities
|
||||
|
||||
### Bing Search API
|
||||
|
@ -19,13 +19,26 @@ pip install langchain-ai21
|
||||
|
||||
See a [usage example](/docs/integrations/llms/ai21).
|
||||
|
||||
### AI21 LLM
|
||||
|
||||
```python
|
||||
from langchain_community.llms import AI21
|
||||
from langchain_ai21 import AI21LLM
|
||||
```
|
||||
|
||||
### AI21 Contextual Answer
|
||||
|
||||
You can use AI21’s contextual answers model to receive text or document,
|
||||
serving as a context, and a question and return an answer based entirely on this context.
|
||||
|
||||
```python
|
||||
from langchain_ai21 import AI21ContextualAnswers
|
||||
```
|
||||
|
||||
|
||||
## Chat models
|
||||
|
||||
### AI21 Chat
|
||||
|
||||
See a [usage example](/docs/integrations/chat/ai21).
|
||||
|
||||
```python
|
||||
@ -34,9 +47,21 @@ from langchain_ai21 import ChatAI21
|
||||
|
||||
## Embedding models
|
||||
|
||||
### AI21 Embeddings
|
||||
|
||||
See a [usage example](/docs/integrations/text_embedding/ai21).
|
||||
|
||||
```python
|
||||
from langchain_ai21 import AI21Embeddings
|
||||
```
|
||||
|
||||
## Text splitters
|
||||
|
||||
### AI21 Semantic Text Splitter
|
||||
|
||||
See a [usage example](/docs/integrations/document_transformers/ai21_semantic_text_splitter).
|
||||
|
||||
```python
|
||||
from langchain_ai21 import AI21SemanticTextSplitter
|
||||
```
|
||||
|
||||
|
@ -48,3 +48,11 @@ See a [usage example](/docs/integrations/vectorstores/baiducloud_vector_search).
|
||||
```python
|
||||
from langchain_community.vectorstores import BESVectorStore
|
||||
```
|
||||
|
||||
### Baidu VectorDB
|
||||
|
||||
See a [usage example](/docs/integrations/vectorstores/baiduvectordb).
|
||||
|
||||
```python
|
||||
from langchain_community.vectorstores import BaiduVectorDB
|
||||
```
|
||||
|
@ -4,6 +4,7 @@ This page covers how to use the [Serper](https://serper.dev) Google Search API w
|
||||
It is broken into two parts: setup, and then references to the specific Google Serper wrapper.
|
||||
|
||||
## Setup
|
||||
|
||||
- Go to [serper.dev](https://serper.dev) to sign up for a free account
|
||||
- Get the api key and set it as an environment variable (`SERPER_API_KEY`)
|
||||
|
||||
|
@ -1,78 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# MistralAI\n",
|
||||
"\n",
|
||||
"Mistral AI is a platform that offers hosting for their powerful open source models.\n",
|
||||
"\n",
|
||||
"You can access them via their [API](https://docs.mistral.ai/api/).\n",
|
||||
"\n",
|
||||
"A valid [API key](https://console.mistral.ai/users/api-keys/) is needed to communicate with the API.\n",
|
||||
"\n",
|
||||
"You will also need the `langchain-mistralai` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain-core langchain-mistralai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"id": "y8ku6X96sebl"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_mistralai import ChatMistralAI, MistralAIEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"See the docs for their\n",
|
||||
"\n",
|
||||
"- [Chat Model](/docs/integrations/chat/mistralai)\n",
|
||||
"- [Embeddings Model](/docs/integrations/text_embedding/mistralai)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
34
docs/docs/integrations/providers/mistralai.mdx
Normal file
34
docs/docs/integrations/providers/mistralai.mdx
Normal file
@ -0,0 +1,34 @@
|
||||
# MistralAI
|
||||
|
||||
>[Mistral AI](https://docs.mistral.ai/api/) is a platform that offers hosting for their powerful open source models.
|
||||
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
A valid [API key](https://console.mistral.ai/users/api-keys/) is needed to communicate with the API.
|
||||
|
||||
You will also need the `langchain-mistralai` package:
|
||||
|
||||
```bash
|
||||
pip install langchain-mistralai
|
||||
```
|
||||
|
||||
## Chat models
|
||||
|
||||
### ChatMistralAI
|
||||
|
||||
See a [usage example](/docs/integrations/chat/mistralai).
|
||||
|
||||
```python
|
||||
from langchain_mistralai.chat_models import ChatMistralAI
|
||||
```
|
||||
|
||||
## Embedding models
|
||||
|
||||
### MistralAIEmbeddings
|
||||
|
||||
See a [usage example](/docs/integrations/text_embedding/mistralai).
|
||||
|
||||
```python
|
||||
from langchain_mistralai import MistralAIEmbeddings
|
||||
```
|
@ -4,21 +4,28 @@
|
||||
> and external source, providing optimized search results and generative answers.
|
||||
> It can handle video and audio transcription, image content extraction, and document parsing.
|
||||
|
||||
>`Nuclia Understanding API` document transformer splits text into paragraphs and sentences,
|
||||
> identifies entities, provides a summary of the text and generates embeddings for all the sentences.
|
||||
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
We need to install the `nucliadb-protos` package to use the `Nuclia Understanding API`.
|
||||
We need to install the `nucliadb-protos` package to use the `Nuclia Understanding API`
|
||||
|
||||
```bash
|
||||
pip install nucliadb-protos
|
||||
```
|
||||
|
||||
To use the `Nuclia Understanding API`, we need to have a `Nuclia account`.
|
||||
We need to have a `Nuclia account`.
|
||||
We can create one for free at [https://nuclia.cloud](https://nuclia.cloud),
|
||||
and then [create a NUA key](https://docs.nuclia.dev/docs/docs/using/understanding/intro).
|
||||
|
||||
|
||||
## Document Transformer
|
||||
|
||||
### Nuclia
|
||||
|
||||
>`Nuclia Understanding API` document transformer splits text into paragraphs and sentences,
|
||||
> identifies entities, provides a summary of the text and generates embeddings for all the sentences.
|
||||
|
||||
To use the Nuclia document transformer, we need to instantiate a `NucliaUnderstandingAPI`
|
||||
tool with `enable_ml` set to `True`:
|
||||
|
||||
@ -28,10 +35,44 @@ from langchain_community.tools.nuclia import NucliaUnderstandingAPI
|
||||
nua = NucliaUnderstandingAPI(enable_ml=True)
|
||||
```
|
||||
|
||||
## Document Transformer
|
||||
|
||||
See a [usage example](/docs/integrations/document_transformers/nuclia_transformer).
|
||||
|
||||
```python
|
||||
from langchain_community.document_transformers.nuclia_text_transform import NucliaTextTransformer
|
||||
```
|
||||
|
||||
## Document Loaders
|
||||
|
||||
### Nuclea loader
|
||||
|
||||
See a [usage example](/docs/integrations/document_loaders/nuclia).
|
||||
|
||||
```python
|
||||
from langchain_community.document_loaders.nuclia import NucliaLoader
|
||||
```
|
||||
|
||||
## Vector store
|
||||
|
||||
### NucliaDB
|
||||
|
||||
We need to install a python package:
|
||||
|
||||
```bash
|
||||
pip install nuclia
|
||||
```
|
||||
|
||||
See a [usage example](/docs/integrations/vectorstores/nucliadb).
|
||||
|
||||
```python
|
||||
from langchain_community.vectorstores.nucliadb import NucliaDB
|
||||
```
|
||||
|
||||
## Tools
|
||||
|
||||
### Nuclia Understanding
|
||||
|
||||
See a [usage example](/docs/integrations/tools/nuclia).
|
||||
|
||||
```python
|
||||
from langchain_community.tools.nuclia import NucliaUnderstandingAPI
|
||||
```
|
||||
|
Loading…
Reference in New Issue
Block a user