mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-22 02:50:31 +00:00
community[patch]: import flattening fix (#20110)
This PR should make it easier for linters to do type checking and for IDEs to jump to definition of code. See #20050 as a template for this PR. - As a byproduct: Added 3 missed `test_imports`. - Added missed `SolarChat` in to __init___.py Added it into test_import ut. - Added `# type: ignore` to fix linting. It is not clear, why linting errors appear after ^ changes. --------- Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This commit is contained in:
@@ -116,7 +116,7 @@ class ConversationalAgent(Agent):
|
||||
format_instructions=format_instructions,
|
||||
input_variables=input_variables,
|
||||
)
|
||||
llm_chain = LLMChain(
|
||||
llm_chain = LLMChain( # type: ignore[misc]
|
||||
llm=llm,
|
||||
prompt=prompt,
|
||||
callback_manager=callback_manager,
|
||||
|
@@ -125,7 +125,7 @@ class ConversationalChatAgent(Agent):
|
||||
input_variables=input_variables,
|
||||
output_parser=_output_parser,
|
||||
)
|
||||
llm_chain = LLMChain(
|
||||
llm_chain = LLMChain( # type: ignore[misc]
|
||||
llm=llm,
|
||||
prompt=prompt,
|
||||
callback_manager=callback_manager,
|
||||
|
@@ -110,7 +110,7 @@ class ZeroShotAgent(Agent):
|
||||
format_instructions=format_instructions,
|
||||
input_variables=input_variables,
|
||||
)
|
||||
llm_chain = LLMChain(
|
||||
llm_chain = LLMChain( # type: ignore[misc]
|
||||
llm=llm,
|
||||
prompt=prompt,
|
||||
callback_manager=callback_manager,
|
||||
|
@@ -27,7 +27,7 @@ class LLMRequestsChain(Chain):
|
||||
See https://python.langchain.com/docs/security for more information.
|
||||
"""
|
||||
|
||||
llm_chain: LLMChain
|
||||
llm_chain: LLMChain # type: ignore[valid-type]
|
||||
requests_wrapper: TextRequestsWrapper = Field(
|
||||
default_factory=lambda: TextRequestsWrapper(headers=DEFAULT_HEADERS),
|
||||
exclude=True,
|
||||
@@ -87,7 +87,7 @@ class LLMRequestsChain(Chain):
|
||||
# extract the text from the html
|
||||
soup = BeautifulSoup(res, "html.parser")
|
||||
other_keys[self.requests_key] = soup.get_text()[: self.text_length]
|
||||
result = self.llm_chain.predict(
|
||||
result = self.llm_chain.predict( # type: ignore[attr-defined]
|
||||
callbacks=_run_manager.get_child(), **other_keys
|
||||
)
|
||||
return {self.output_key: result}
|
||||
|
@@ -134,7 +134,7 @@ def _load_map_reduce_documents_chain(
|
||||
)
|
||||
|
||||
|
||||
def _load_reduce_documents_chain(config: dict, **kwargs: Any) -> ReduceDocumentsChain:
|
||||
def _load_reduce_documents_chain(config: dict, **kwargs: Any) -> ReduceDocumentsChain: # type: ignore[valid-type]
|
||||
combine_documents_chain = None
|
||||
collapse_documents_chain = None
|
||||
|
||||
@@ -187,7 +187,7 @@ def _load_reduce_documents_chain(config: dict, **kwargs: Any) -> ReduceDocuments
|
||||
config.pop("collapse_document_chain_path"), **kwargs
|
||||
)
|
||||
|
||||
return ReduceDocumentsChain(
|
||||
return ReduceDocumentsChain( # type: ignore[misc]
|
||||
combine_documents_chain=combine_documents_chain,
|
||||
collapse_documents_chain=collapse_documents_chain,
|
||||
**config,
|
||||
|
@@ -52,7 +52,7 @@ def create_openai_fn_chain(
|
||||
output_key: str = "function",
|
||||
output_parser: Optional[BaseLLMOutputParser] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMChain:
|
||||
) -> LLMChain: # type: ignore[valid-type]
|
||||
"""[Legacy] Create an LLM chain that uses OpenAI functions.
|
||||
|
||||
Args:
|
||||
@@ -132,7 +132,7 @@ def create_openai_fn_chain(
|
||||
}
|
||||
if len(openai_functions) == 1 and enforce_single_function_usage:
|
||||
llm_kwargs["function_call"] = {"name": openai_functions[0]["name"]}
|
||||
llm_chain = LLMChain(
|
||||
llm_chain = LLMChain( # type: ignore[misc]
|
||||
llm=llm,
|
||||
prompt=prompt,
|
||||
output_parser=output_parser,
|
||||
@@ -154,7 +154,7 @@ def create_structured_output_chain(
|
||||
output_key: str = "function",
|
||||
output_parser: Optional[BaseLLMOutputParser] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMChain:
|
||||
) -> LLMChain: # type: ignore[valid-type]
|
||||
"""[Legacy] Create an LLMChain that uses an OpenAI function to get a structured output.
|
||||
|
||||
Args:
|
||||
|
@@ -59,7 +59,7 @@ class BaseQAWithSourcesChain(Chain, ABC):
|
||||
document_prompt=document_prompt,
|
||||
document_variable_name="summaries",
|
||||
)
|
||||
reduce_documents_chain = ReduceDocumentsChain(
|
||||
reduce_documents_chain = ReduceDocumentsChain( # type: ignore[misc]
|
||||
combine_documents_chain=combine_results_chain
|
||||
)
|
||||
combine_documents_chain = MapReduceDocumentsChain(
|
||||
|
@@ -153,7 +153,7 @@ def _load_map_reduce_chain(
|
||||
verbose=verbose, # type: ignore[arg-type]
|
||||
callback_manager=callback_manager,
|
||||
)
|
||||
reduce_documents_chain = ReduceDocumentsChain(
|
||||
reduce_documents_chain = ReduceDocumentsChain( # type: ignore[misc]
|
||||
combine_documents_chain=combine_documents_chain,
|
||||
collapse_documents_chain=collapse_chain,
|
||||
token_max=token_max,
|
||||
|
@@ -27,10 +27,10 @@ def test_daxquery() -> None:
|
||||
|
||||
fast_llm = ChatOpenAI(
|
||||
temperature=0.5, max_tokens=1000, model_name="gpt-3.5-turbo", verbose=True
|
||||
)
|
||||
) # type: ignore[call-arg]
|
||||
smart_llm = ChatOpenAI(
|
||||
temperature=0, max_tokens=100, model_name="gpt-4", verbose=True
|
||||
)
|
||||
) # type: ignore[call-arg]
|
||||
|
||||
toolkit = PowerBIToolkit(
|
||||
powerbi=PowerBIDataset(
|
||||
|
Reference in New Issue
Block a user