mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-21 14:18:52 +00:00
Add OpenLLM wrapper(#6578)
LLM wrapper for models served with OpenLLM --------- Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com> Authored-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com> Co-authored-by: Chaoyu <paranoyang@gmail.com>
This commit is contained in:
parent
d718f3b6d0
commit
4fabd02d25
70
docs/extras/ecosystem/integrations/openllm.mdx
Normal file
70
docs/extras/ecosystem/integrations/openllm.mdx
Normal file
@ -0,0 +1,70 @@
|
|||||||
|
# OpenLLM
|
||||||
|
|
||||||
|
This page demonstrates how to use [OpenLLM](https://github.com/bentoml/OpenLLM)
|
||||||
|
with LangChain.
|
||||||
|
|
||||||
|
`OpenLLM` is an open platform for operating large language models (LLMs) in
|
||||||
|
production. It enables developers to easily run inference with any open-source
|
||||||
|
LLMs, deploy to the cloud or on-premises, and build powerful AI apps.
|
||||||
|
|
||||||
|
## Installation and Setup
|
||||||
|
|
||||||
|
Install the OpenLLM package via PyPI:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install openllm
|
||||||
|
```
|
||||||
|
|
||||||
|
## LLM
|
||||||
|
|
||||||
|
OpenLLM supports a wide range of open-source LLMs as well as serving users' own
|
||||||
|
fine-tuned LLMs. Use `openllm model` command to see all available models that
|
||||||
|
are pre-optimized for OpenLLM.
|
||||||
|
|
||||||
|
## Wrappers
|
||||||
|
|
||||||
|
There is a OpenLLM Wrapper which supports loading LLM in-process or accessing a
|
||||||
|
remote OpenLLM server:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langchain.llms import OpenLLM
|
||||||
|
```
|
||||||
|
|
||||||
|
### Wrapper for OpenLLM server
|
||||||
|
|
||||||
|
This wrapper supports connecting to an OpenLLM server via HTTP or gRPC. The
|
||||||
|
OpenLLM server can run either locally or on the cloud.
|
||||||
|
|
||||||
|
To try it out locally, start an OpenLLM server:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
openllm start flan-t5
|
||||||
|
```
|
||||||
|
|
||||||
|
Wrapper usage:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langchain.llms import OpenLLM
|
||||||
|
|
||||||
|
llm = OpenLLM(server_url='http://localhost:3000')
|
||||||
|
|
||||||
|
llm("What is the difference between a duck and a goose? And why there are so many Goose in Canada?")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Wrapper for Local Inference
|
||||||
|
|
||||||
|
You can also use the OpenLLM wrapper to load LLM in current Python process for
|
||||||
|
running inference.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langchain.llms import OpenLLM
|
||||||
|
|
||||||
|
llm = OpenLLM(model_name="dolly-v2", model_id='databricks/dolly-v2-7b')
|
||||||
|
|
||||||
|
llm("What is the difference between a duck and a goose? And why there are so many Goose in Canada?")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Usage
|
||||||
|
|
||||||
|
For a more detailed walkthrough of the OpenLLM Wrapper, see the
|
||||||
|
[example notebook](../modules/models/llms/integrations/openllm.ipynb)
|
@ -21,7 +21,8 @@ This guide aims to provide a comprehensive overview of the requirements for depl
|
|||||||
Understanding these components is crucial when assessing serving systems. LangChain integrates with several open-source projects designed to tackle these issues, providing a robust framework for productionizing your LLM applications. Some notable frameworks include:
|
Understanding these components is crucial when assessing serving systems. LangChain integrates with several open-source projects designed to tackle these issues, providing a robust framework for productionizing your LLM applications. Some notable frameworks include:
|
||||||
|
|
||||||
- [Ray Serve](/docs/ecosystem/integrations/ray_serve.html)
|
- [Ray Serve](/docs/ecosystem/integrations/ray_serve.html)
|
||||||
- [BentoML](https://github.com/ssheng/BentoChain)
|
- [BentoML](https://github.com/bentoml/BentoML)
|
||||||
|
- [OpenLLM](/docs/ecosystem/integrations/openllm.html)
|
||||||
- [Modal](/docs/ecosystem/integrations/modal.html)
|
- [Modal](/docs/ecosystem/integrations/modal.html)
|
||||||
|
|
||||||
These links will provide further information on each ecosystem, assisting you in finding the best fit for your LLM deployment needs.
|
These links will provide further information on each ecosystem, assisting you in finding the best fit for your LLM deployment needs.
|
||||||
|
@ -67,6 +67,11 @@ This repository allows users to serve local chains and agents as RESTful, gRPC,
|
|||||||
|
|
||||||
This repository provides an example of how to deploy a LangChain application with [BentoML](https://github.com/bentoml/BentoML). BentoML is a framework that enables the containerization of machine learning applications as standard OCI images. BentoML also allows for the automatic generation of OpenAPI and gRPC endpoints. With BentoML, you can integrate models from all popular ML frameworks and deploy them as microservices running on the most optimal hardware and scaling independently.
|
This repository provides an example of how to deploy a LangChain application with [BentoML](https://github.com/bentoml/BentoML). BentoML is a framework that enables the containerization of machine learning applications as standard OCI images. BentoML also allows for the automatic generation of OpenAPI and gRPC endpoints. With BentoML, you can integrate models from all popular ML frameworks and deploy them as microservices running on the most optimal hardware and scaling independently.
|
||||||
|
|
||||||
|
## [OpenLLM](https://github.com/bentoml/OpenLLM)
|
||||||
|
|
||||||
|
OpenLLM is a platform for operating large language models (LLMs) in production. With OpenLLM, you can run inference with any open-source LLM, deploy to the cloud or on-premises, and build powerful AI apps. It supports a wide range of open-source LLMs, offers flexible APIs, and first-class support for LangChain and BentoML.
|
||||||
|
See OpenLLM's [integration doc](https://github.com/bentoml/OpenLLM#%EF%B8%8F-integrations) for usage with LangChain.
|
||||||
|
|
||||||
## [Databutton](https://databutton.com/home?new-data-app=true)
|
## [Databutton](https://databutton.com/home?new-data-app=true)
|
||||||
|
|
||||||
These templates serve as examples of how to build, deploy, and share LangChain applications using Databutton. You can create user interfaces with Streamlit, automate tasks by scheduling Python code, and store files and data in the built-in store. Examples include a Chatbot interface with conversational memory, a Personal search engine, and a starter template for LangChain apps. Deploying and sharing is just one click away.
|
These templates serve as examples of how to build, deploy, and share LangChain applications using Databutton. You can create user interfaces with Streamlit, automate tasks by scheduling Python code, and store files and data in the built-in store. Examples include a Chatbot interface with conversational memory, a Personal search engine, and a starter template for LangChain apps. Deploying and sharing is just one click away.
|
||||||
|
@ -0,0 +1,159 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "026cc336",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# OpenLLM\n",
|
||||||
|
"\n",
|
||||||
|
"[🦾 OpenLLM](https://github.com/bentoml/OpenLLM) is an open platform for operating large language models (LLMs) in production. It enables developers to easily run inference with any open-source LLMs, deploy to the cloud or on-premises, and build powerful AI apps."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "da0ddca1",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Installation\n",
|
||||||
|
"\n",
|
||||||
|
"Install `openllm` through [PyPI](https://pypi.org/project/openllm/)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "6601c03b",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!pip install openllm"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "90174fe3",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Launch OpenLLM server locally\n",
|
||||||
|
"\n",
|
||||||
|
"To start an LLM server, use `openllm start` command. For example, to start a dolly-v2 server, run the following command from a terminal:\n",
|
||||||
|
"\n",
|
||||||
|
"```bash\n",
|
||||||
|
"openllm start dolly-v2\n",
|
||||||
|
"```\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"## Wrapper"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "35b6bf60",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.llms import OpenLLM\n",
|
||||||
|
"\n",
|
||||||
|
"server_url = \"http://localhost:3000\" # Replace with remote host if you are running on a remote server \n",
|
||||||
|
"llm = OpenLLM(server_url=server_url)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "4f830f9d",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Optional: Local LLM Inference\n",
|
||||||
|
"\n",
|
||||||
|
"You may also choose to initialize an LLM managed by OpenLLM locally from current process. This is useful for development purpose and allows developers to quickly try out different types of LLMs.\n",
|
||||||
|
"\n",
|
||||||
|
"When moving LLM applications to production, we recommend deploying the OpenLLM server separately and access via the `server_url` option demonstrated above.\n",
|
||||||
|
"\n",
|
||||||
|
"To load an LLM locally via the LangChain wrapper:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "82c392b6",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.llms import OpenLLM\n",
|
||||||
|
"\n",
|
||||||
|
"llm = OpenLLM(\n",
|
||||||
|
" model_name=\"dolly-v2\",\n",
|
||||||
|
" model_id=\"databricks/dolly-v2-3b\",\n",
|
||||||
|
" temperature=0.94,\n",
|
||||||
|
" repetition_penalty=1.2,\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "f15ebe0d",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Integrate with a LLMChain"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 11,
|
||||||
|
"id": "8b02a97a",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"iLkb\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"from langchain import PromptTemplate, LLMChain\n",
|
||||||
|
"\n",
|
||||||
|
"template = \"What is a good name for a company that makes {product}?\"\n",
|
||||||
|
"\n",
|
||||||
|
"prompt = PromptTemplate(template=template, input_variables=[\"product\"])\n",
|
||||||
|
"\n",
|
||||||
|
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
|
||||||
|
"\n",
|
||||||
|
"generated = llm_chain.run(product=\"mechanical keyboard\")\n",
|
||||||
|
"print(generated)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "56cb4bc0",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.10.10"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
@ -32,6 +32,7 @@ from langchain.llms.modal import Modal
|
|||||||
from langchain.llms.mosaicml import MosaicML
|
from langchain.llms.mosaicml import MosaicML
|
||||||
from langchain.llms.nlpcloud import NLPCloud
|
from langchain.llms.nlpcloud import NLPCloud
|
||||||
from langchain.llms.openai import AzureOpenAI, OpenAI, OpenAIChat
|
from langchain.llms.openai import AzureOpenAI, OpenAI, OpenAIChat
|
||||||
|
from langchain.llms.openllm import OpenLLM
|
||||||
from langchain.llms.openlm import OpenLM
|
from langchain.llms.openlm import OpenLM
|
||||||
from langchain.llms.petals import Petals
|
from langchain.llms.petals import Petals
|
||||||
from langchain.llms.pipelineai import PipelineAI
|
from langchain.llms.pipelineai import PipelineAI
|
||||||
@ -81,6 +82,7 @@ __all__ = [
|
|||||||
"NLPCloud",
|
"NLPCloud",
|
||||||
"OpenAI",
|
"OpenAI",
|
||||||
"OpenAIChat",
|
"OpenAIChat",
|
||||||
|
"OpenLLM",
|
||||||
"OpenLM",
|
"OpenLM",
|
||||||
"Petals",
|
"Petals",
|
||||||
"PipelineAI",
|
"PipelineAI",
|
||||||
@ -138,5 +140,7 @@ type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
|
|||||||
"self_hosted_hugging_face": SelfHostedHuggingFaceLLM,
|
"self_hosted_hugging_face": SelfHostedHuggingFaceLLM,
|
||||||
"stochasticai": StochasticAI,
|
"stochasticai": StochasticAI,
|
||||||
"vertexai": VertexAI,
|
"vertexai": VertexAI,
|
||||||
|
"openllm": OpenLLM,
|
||||||
|
"openllm_client": OpenLLM,
|
||||||
"writer": Writer,
|
"writer": Writer,
|
||||||
}
|
}
|
||||||
|
307
langchain/llms/openllm.py
Normal file
307
langchain/llms/openllm.py
Normal file
@ -0,0 +1,307 @@
|
|||||||
|
"""Wrapper around OpenLLM APIs."""
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import copy
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
from typing import (
|
||||||
|
TYPE_CHECKING,
|
||||||
|
Any,
|
||||||
|
Dict,
|
||||||
|
List,
|
||||||
|
Literal,
|
||||||
|
Optional,
|
||||||
|
TypedDict,
|
||||||
|
Union,
|
||||||
|
overload,
|
||||||
|
)
|
||||||
|
|
||||||
|
from pydantic import PrivateAttr
|
||||||
|
|
||||||
|
from langchain.callbacks.manager import (
|
||||||
|
AsyncCallbackManagerForLLMRun,
|
||||||
|
CallbackManagerForLLMRun,
|
||||||
|
)
|
||||||
|
from langchain.llms.base import LLM
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
import openllm
|
||||||
|
|
||||||
|
|
||||||
|
ServerType = Literal["http", "grpc"]
|
||||||
|
|
||||||
|
|
||||||
|
class IdentifyingParams(TypedDict):
|
||||||
|
model_name: str
|
||||||
|
model_id: Optional[str]
|
||||||
|
server_url: Optional[str]
|
||||||
|
server_type: Optional[ServerType]
|
||||||
|
embedded: bool
|
||||||
|
llm_kwargs: Dict[str, Any]
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class OpenLLM(LLM):
|
||||||
|
"""Wrapper for accessing OpenLLM, supporting both in-process model
|
||||||
|
instance and remote OpenLLM servers.
|
||||||
|
|
||||||
|
To use, you should have the openllm library installed:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
pip install openllm
|
||||||
|
|
||||||
|
Learn more at: https://github.com/bentoml/openllm
|
||||||
|
|
||||||
|
Example running an LLM model locally managed by OpenLLM:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain.llms import OpenLLM
|
||||||
|
llm = OpenLLM(
|
||||||
|
model_name='flan-t5',
|
||||||
|
model_id='google/flan-t5-large',
|
||||||
|
)
|
||||||
|
llm("What is the difference between a duck and a goose?")
|
||||||
|
|
||||||
|
For all available supported models, you can run 'openllm models'.
|
||||||
|
|
||||||
|
If you have a OpenLLM server running, you can also use it remotely:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain.llms import OpenLLM
|
||||||
|
llm = OpenLLM(server_url='http://localhost:3000')
|
||||||
|
llm("What is the difference between a duck and a goose?")
|
||||||
|
"""
|
||||||
|
|
||||||
|
model_name: Optional[str] = None
|
||||||
|
"""Model name to use. See 'openllm models' for all available models."""
|
||||||
|
model_id: Optional[str] = None
|
||||||
|
"""Model Id to use. If not provided, will use the default model for the model name.
|
||||||
|
See 'openllm models' for all available model variants."""
|
||||||
|
server_url: Optional[str] = None
|
||||||
|
"""Optional server URL that currently runs a LLMServer with 'openllm start'."""
|
||||||
|
server_type: ServerType = "http"
|
||||||
|
"""Optional server type. Either 'http' or 'grpc'."""
|
||||||
|
embedded: bool = True
|
||||||
|
"""Initialize this LLM instance in current process by default. Should
|
||||||
|
only set to False when using in conjunction with BentoML Service."""
|
||||||
|
llm_kwargs: Dict[str, Any]
|
||||||
|
"""Key word arguments to be passed to openllm.LLM"""
|
||||||
|
|
||||||
|
_runner: Optional[openllm.LLMRunner] = PrivateAttr(default=None)
|
||||||
|
_client: Union[
|
||||||
|
openllm.client.HTTPClient, openllm.client.GrpcClient, None
|
||||||
|
] = PrivateAttr(default=None)
|
||||||
|
|
||||||
|
class Config:
|
||||||
|
extra = "forbid"
|
||||||
|
|
||||||
|
@overload
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_name: Optional[str] = ...,
|
||||||
|
*,
|
||||||
|
model_id: Optional[str] = ...,
|
||||||
|
embedded: Literal[True, False] = ...,
|
||||||
|
**llm_kwargs: Any,
|
||||||
|
) -> None:
|
||||||
|
...
|
||||||
|
|
||||||
|
@overload
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
server_url: str = ...,
|
||||||
|
server_type: Literal["grpc", "http"] = ...,
|
||||||
|
**llm_kwargs: Any,
|
||||||
|
) -> None:
|
||||||
|
...
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_name: Optional[str] = None,
|
||||||
|
*,
|
||||||
|
model_id: Optional[str] = None,
|
||||||
|
server_url: Optional[str] = None,
|
||||||
|
server_type: Literal["grpc", "http"] = "http",
|
||||||
|
embedded: bool = True,
|
||||||
|
**llm_kwargs: Any,
|
||||||
|
):
|
||||||
|
try:
|
||||||
|
import openllm
|
||||||
|
except ImportError as e:
|
||||||
|
raise ImportError(
|
||||||
|
"Could not import openllm. Make sure to install it with "
|
||||||
|
"'pip install openllm.'"
|
||||||
|
) from e
|
||||||
|
|
||||||
|
llm_kwargs = llm_kwargs or {}
|
||||||
|
|
||||||
|
if server_url is not None:
|
||||||
|
logger.debug("'server_url' is provided, returning a openllm.Client")
|
||||||
|
assert (
|
||||||
|
model_id is None and model_name is None
|
||||||
|
), "'server_url' and {'model_id', 'model_name'} are mutually exclusive"
|
||||||
|
client_cls = (
|
||||||
|
openllm.client.HTTPClient
|
||||||
|
if server_type == "http"
|
||||||
|
else openllm.client.GrpcClient
|
||||||
|
)
|
||||||
|
client = client_cls(server_url)
|
||||||
|
|
||||||
|
super().__init__(
|
||||||
|
**{
|
||||||
|
"server_url": server_url,
|
||||||
|
"server_type": server_type,
|
||||||
|
"llm_kwargs": llm_kwargs,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
self._runner = None # type: ignore
|
||||||
|
self._client = client
|
||||||
|
else:
|
||||||
|
assert model_name is not None, "Must provide 'model_name' or 'server_url'"
|
||||||
|
# since the LLM are relatively huge, we don't actually want to convert the
|
||||||
|
# Runner with embedded when running the server. Instead, we will only set
|
||||||
|
# the init_local here so that LangChain users can still use the LLM
|
||||||
|
# in-process. Wrt to BentoML users, setting embedded=False is the expected
|
||||||
|
# behaviour to invoke the runners remotely
|
||||||
|
runner = openllm.Runner(
|
||||||
|
model_name=model_name,
|
||||||
|
model_id=model_id,
|
||||||
|
init_local=embedded,
|
||||||
|
**llm_kwargs,
|
||||||
|
)
|
||||||
|
super().__init__(
|
||||||
|
**{
|
||||||
|
"model_name": model_name,
|
||||||
|
"model_id": model_id,
|
||||||
|
"embedded": embedded,
|
||||||
|
"llm_kwargs": llm_kwargs,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
self._client = None # type: ignore
|
||||||
|
self._runner = runner
|
||||||
|
|
||||||
|
@property
|
||||||
|
def runner(self) -> openllm.LLMRunner:
|
||||||
|
"""
|
||||||
|
Get the underlying openllm.LLMRunner instance for integration with BentoML.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
llm = OpenLLM(
|
||||||
|
model_name='flan-t5',
|
||||||
|
model_id='google/flan-t5-large',
|
||||||
|
embedded=False,
|
||||||
|
)
|
||||||
|
tools = load_tools(["serpapi", "llm-math"], llm=llm)
|
||||||
|
agent = initialize_agent(
|
||||||
|
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION
|
||||||
|
)
|
||||||
|
svc = bentoml.Service("langchain-openllm", runners=[llm.runner])
|
||||||
|
|
||||||
|
@svc.api(input=Text(), output=Text())
|
||||||
|
def chat(input_text: str):
|
||||||
|
return agent.run(input_text)
|
||||||
|
"""
|
||||||
|
if self._runner is None:
|
||||||
|
raise ValueError("OpenLLM must be initialized locally with 'model_name'")
|
||||||
|
return self._runner
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _identifying_params(self) -> IdentifyingParams:
|
||||||
|
"""Get the identifying parameters."""
|
||||||
|
if self._client is not None:
|
||||||
|
self.llm_kwargs.update(self._client.configuration)
|
||||||
|
model_name = self._client.model_name
|
||||||
|
model_id = self._client.model_id
|
||||||
|
else:
|
||||||
|
if self._runner is None:
|
||||||
|
raise ValueError("Runner must be initialized.")
|
||||||
|
model_name = self.model_name
|
||||||
|
model_id = self.model_id
|
||||||
|
try:
|
||||||
|
self.llm_kwargs.update(
|
||||||
|
json.loads(self._runner.identifying_params["configuration"])
|
||||||
|
)
|
||||||
|
except (TypeError, json.JSONDecodeError):
|
||||||
|
pass
|
||||||
|
return IdentifyingParams(
|
||||||
|
server_url=self.server_url,
|
||||||
|
server_type=self.server_type,
|
||||||
|
embedded=self.embedded,
|
||||||
|
llm_kwargs=self.llm_kwargs,
|
||||||
|
model_name=model_name,
|
||||||
|
model_id=model_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _llm_type(self) -> str:
|
||||||
|
return "openllm_client" if self._client else "openllm"
|
||||||
|
|
||||||
|
def _call(
|
||||||
|
self,
|
||||||
|
prompt: str,
|
||||||
|
stop: Optional[List[str]] = None,
|
||||||
|
run_manager: CallbackManagerForLLMRun | None = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> str:
|
||||||
|
try:
|
||||||
|
import openllm
|
||||||
|
except ImportError as e:
|
||||||
|
raise ImportError(
|
||||||
|
"Could not import openllm. Make sure to install it with "
|
||||||
|
"'pip install openllm'."
|
||||||
|
) from e
|
||||||
|
|
||||||
|
copied = copy.deepcopy(self.llm_kwargs)
|
||||||
|
copied.update(kwargs)
|
||||||
|
config = openllm.AutoConfig.for_model(
|
||||||
|
self._identifying_params["model_name"], **copied
|
||||||
|
)
|
||||||
|
if self._client:
|
||||||
|
return self._client.query(prompt, **config.model_dump(flatten=True))
|
||||||
|
else:
|
||||||
|
assert self._runner is not None
|
||||||
|
return self._runner(prompt, **config.model_dump(flatten=True))
|
||||||
|
|
||||||
|
async def _acall(
|
||||||
|
self,
|
||||||
|
prompt: str,
|
||||||
|
stop: Optional[List[str]] = None,
|
||||||
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> str:
|
||||||
|
try:
|
||||||
|
import openllm
|
||||||
|
except ImportError as e:
|
||||||
|
raise ImportError(
|
||||||
|
"Could not import openllm. Make sure to install it with "
|
||||||
|
"'pip install openllm'."
|
||||||
|
) from e
|
||||||
|
|
||||||
|
copied = copy.deepcopy(self.llm_kwargs)
|
||||||
|
copied.update(kwargs)
|
||||||
|
config = openllm.AutoConfig.for_model(
|
||||||
|
self._identifying_params["model_name"], **copied
|
||||||
|
)
|
||||||
|
if self._client:
|
||||||
|
return await self._client.acall(
|
||||||
|
"generate", prompt, **config.model_dump(flatten=True)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert self._runner is not None
|
||||||
|
(
|
||||||
|
prompt,
|
||||||
|
generate_kwargs,
|
||||||
|
postprocess_kwargs,
|
||||||
|
) = self._runner.llm.sanitize_parameters(prompt, **kwargs)
|
||||||
|
generated_result = await self._runner.generate.async_run(
|
||||||
|
prompt, **generate_kwargs
|
||||||
|
)
|
||||||
|
return self._runner.llm.postprocess_generate(
|
||||||
|
prompt, generated_result, **postprocess_kwargs
|
||||||
|
)
|
755
poetry.lock
generated
755
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@ -108,10 +108,10 @@ nebula3-python = {version = "^3.4.0", optional = true}
|
|||||||
langchainplus-sdk = ">=0.0.13"
|
langchainplus-sdk = ">=0.0.13"
|
||||||
awadb = {version = "^0.3.3", optional = true}
|
awadb = {version = "^0.3.3", optional = true}
|
||||||
azure-search-documents = {version = "11.4.0a20230509004", source = "azure-sdk-dev", optional = true}
|
azure-search-documents = {version = "11.4.0a20230509004", source = "azure-sdk-dev", optional = true}
|
||||||
|
openllm = {version = ">=0.1.6", optional = true}
|
||||||
# now streamlit requires Python >=3.7, !=3.9.7 So, it is commented out.
|
# now streamlit requires Python >=3.7, !=3.9.7 So, it is commented out.
|
||||||
#streamlit = {version = "^1.18.0", optional = true}
|
#streamlit = {version = "^1.18.0", optional = true}
|
||||||
|
|
||||||
|
|
||||||
[tool.poetry.group.docs.dependencies]
|
[tool.poetry.group.docs.dependencies]
|
||||||
autodoc_pydantic = "^1.8.0"
|
autodoc_pydantic = "^1.8.0"
|
||||||
myst_parser = "^0.18.1"
|
myst_parser = "^0.18.1"
|
||||||
@ -213,7 +213,7 @@ playwright = "^1.28.0"
|
|||||||
setuptools = "^67.6.1"
|
setuptools = "^67.6.1"
|
||||||
|
|
||||||
[tool.poetry.extras]
|
[tool.poetry.extras]
|
||||||
llms = ["anthropic", "cohere", "openai", "openlm", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
|
llms = ["anthropic", "cohere", "openai", "openllm", "openlm", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
|
||||||
qdrant = ["qdrant-client"]
|
qdrant = ["qdrant-client"]
|
||||||
openai = ["openai", "tiktoken"]
|
openai = ["openai", "tiktoken"]
|
||||||
text_helpers = ["chardet"]
|
text_helpers = ["chardet"]
|
||||||
|
16
tests/integration_tests/llms/test_openllm.py
Normal file
16
tests/integration_tests/llms/test_openllm.py
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
"""Test OpenLLM wrapper."""
|
||||||
|
from langchain.llms.openllm import OpenLLM
|
||||||
|
|
||||||
|
|
||||||
|
def test_openllm_llm_local() -> None:
|
||||||
|
llm = OpenLLM(model_name="flan-t5", model_id="google/flan-t5-small")
|
||||||
|
output = llm("Say foo:")
|
||||||
|
assert isinstance(output, str)
|
||||||
|
|
||||||
|
|
||||||
|
def test_openllm_with_kwargs() -> None:
|
||||||
|
llm = OpenLLM(
|
||||||
|
model_name="flan-t5", model_id="google/flan-t5-small", temperature=0.84
|
||||||
|
)
|
||||||
|
output = llm("Say bar:")
|
||||||
|
assert isinstance(output, str)
|
Loading…
Reference in New Issue
Block a user