diff --git a/docs/docs/integrations/platforms/huggingface.mdx b/docs/docs/integrations/platforms/huggingface.mdx index b558f8947fc..da7d39c1c7a 100644 --- a/docs/docs/integrations/platforms/huggingface.mdx +++ b/docs/docs/integrations/platforms/huggingface.mdx @@ -12,7 +12,7 @@ pip install langchain-huggingface ## Chat models -### Models from Hugging Face +### ChatHuggingFace We can use the `Hugging Face` LLM classes or directly use the `ChatHuggingFace` class. @@ -24,7 +24,16 @@ from langchain_huggingface import ChatHuggingFace ## LLMs -### Hugging Face Local Pipelines +### HuggingFaceEndpoint + + +See a [usage example](/docs/integrations/llms/huggingface_endpoint). + +```python +from langchain_huggingface import HuggingFaceEndpoint +``` + +### HuggingFacePipeline Hugging Face models can be run locally through the `HuggingFacePipeline` class. @@ -44,6 +53,22 @@ See a [usage example](/docs/integrations/text_embedding/huggingfacehub). from langchain_huggingface import HuggingFaceEmbeddings ``` +### HuggingFaceEndpointEmbeddings + +See a [usage example](/docs/integrations/text_embedding/huggingfacehub). + +```python +from langchain_huggingface import HuggingFaceEndpointEmbeddings +``` + +### HuggingFaceInferenceAPIEmbeddings + +See a [usage example](/docs/integrations/text_embedding/huggingfacehub). + +```python +from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings +``` + ### HuggingFaceInstructEmbeddings See a [usage example](/docs/integrations/text_embedding/instruct_embeddings). @@ -63,25 +88,6 @@ See a [usage example](/docs/integrations/text_embedding/bge_huggingface). from langchain_community.embeddings import HuggingFaceBgeEmbeddings ``` -### Hugging Face Text Embeddings Inference (TEI) - ->[Hugging Face Text Embeddings Inference (TEI)](https://huggingface.co/docs/text-generation-inference/index) is a toolkit for deploying and serving open-source -> text embeddings and sequence classification models. `TEI` enables high-performance extraction for the most popular models, ->including `FlagEmbedding`, `Ember`, `GTE` and `E5`. - -We need to install `huggingface-hub` python package. - -```bash -pip install huggingface-hub -``` - -See a [usage example](/docs/integrations/text_embedding/text_embeddings_inference). - -```python -from langchain_community.embeddings import HuggingFaceHubEmbeddings -``` - - ## Document Loaders ### Hugging Face dataset @@ -104,7 +110,34 @@ See a [usage example](/docs/integrations/document_loaders/hugging_face_dataset). from langchain_community.document_loaders.hugging_face_dataset import HuggingFaceDatasetLoader ``` +### Hugging Face model loader +>Load model information from `Hugging Face Hub`, including README content. +> +>This loader interfaces with the `Hugging Face Models API` to fetch +> and load model metadata and README files. +> The API allows you to search and filter models based on +> specific criteria such as model tags, authors, and more. + +```python +from langchain_community.document_loaders import HuggingFaceModelLoader +``` + +### Image captions + +It uses the Hugging Face models to generate image captions. + +We need to install several python packages. + +```bash +pip install transformers pillow +``` + +See a [usage example](/docs/integrations/document_loaders/image_captions). + +```python +from langchain_community.document_loaders import ImageCaptionLoader +``` ## Tools @@ -124,3 +157,12 @@ See a [usage example](/docs/integrations/tools/huggingface_tools). ```python from langchain_community.agent_toolkits.load_tools import load_huggingface_tool ``` + +### Hugging Face Text-to-Speech Model Inference. + +> It is a wrapper around `OpenAI Text-to-Speech API`. + +```python +from langchain_community.tools.audio import HuggingFaceTextToSpeechModelInference +``` + diff --git a/docs/docs/integrations/providers/apple.mdx b/docs/docs/integrations/providers/apple.mdx new file mode 100644 index 00000000000..5a87afeb6c5 --- /dev/null +++ b/docs/docs/integrations/providers/apple.mdx @@ -0,0 +1,22 @@ +# Apple + +>[Apple Inc. (Wikipedia)](https://en.wikipedia.org/wiki/Apple_Inc.) is an American +> multinational corporation and technology company. +> +> [iMessage (Wikipedia)](https://en.wikipedia.org/wiki/IMessage) is an instant +> messaging service developed by Apple Inc. and launched in 2011. +> `iMessage` functions exclusively on Apple platforms. + +## Installation and Setup + +See [setup instructions](/docs/integrations/chat_loaders/imessage). + +## Chat loader + +It loads chat sessions from the `iMessage` `chat.db` `SQLite` file. + +See a [usage example](/docs/integrations/chat_loaders/imessage). + +```python +from langchain_community.chat_loaders.imessage import IMessageChatLoader +``` diff --git a/docs/docs/integrations/providers/nomic.ipynb b/docs/docs/integrations/providers/nomic.ipynb deleted file mode 100644 index b1f4861612a..00000000000 --- a/docs/docs/integrations/providers/nomic.ipynb +++ /dev/null @@ -1,69 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Nomic\n", - "\n", - "Nomic currently offers two products:\n", - "\n", - "- Atlas: their Visual Data Engine\n", - "- GPT4All: their Open Source Edge Language Model Ecosystem\n", - "\n", - "The Nomic integration exists in its own [partner package](https://pypi.org/project/langchain-nomic/). You can install it with:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%pip install -qU langchain-nomic" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Currently, you can import their hosted [embedding model](/docs/integrations/text_embedding/nomic) as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "y8ku6X96sebl" - }, - "outputs": [], - "source": [ - "from langchain_nomic import NomicEmbeddings" - ] - } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.11" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/docs/docs/integrations/providers/nomic.mdx b/docs/docs/integrations/providers/nomic.mdx new file mode 100644 index 00000000000..f825e3c74e3 --- /dev/null +++ b/docs/docs/integrations/providers/nomic.mdx @@ -0,0 +1,58 @@ +# Nomic + +>[Nomic](https://www.nomic.ai/) builds tools that enable everyone to interact with AI scale datasets and run AI models on consumer computers. +> +>`Nomic` currently offers two products: +> +>- `Atlas`: the Visual Data Engine +>- `GPT4All`: the Open Source Edge Language Model Ecosystem + +The Nomic integration exists in two partner packages: [langchain-nomic](https://pypi.org/project/langchain-nomic/) +and in [langchain-community](https://pypi.org/project/langchain-community/). + +## Installation + +You can install them with: + +```bash +pip install -U langchain-nomic +pip install -U langchain-community +``` + +## LLMs + +### GPT4All + +See [a usage example](/docs/integrations/llms/gpt4all). + +```python +from langchain_community.llms import GPT4All +``` + +## Embedding models + +### NomicEmbeddings + +See [a usage example](/docs/integrations/text_embedding/nomic). + +```python +from langchain_nomic import NomicEmbeddings +``` + +### GPT4All + +See [a usage example](/docs/integrations/text_embedding/gpt4all). + +```python +from langchain_community.embeddings import GPT4AllEmbeddings +``` + +## Vector store + +### Atlas + +See [a usage example and installation instructions](/docs/integrations/vectorstores/atlas). + +```python +from langchain_community.vectorstores import AtlasDB +``` diff --git a/docs/docs/integrations/providers/transwarp.mdx b/docs/docs/integrations/providers/transwarp.mdx new file mode 100644 index 00000000000..4406f885bab --- /dev/null +++ b/docs/docs/integrations/providers/transwarp.mdx @@ -0,0 +1,34 @@ +# Transwarp + +>[Transwarp](https://www.transwarp.cn/en/introduction) aims to build +> enterprise-level big data and AI infrastructure software, +> to shape the future of data world. It provides enterprises with +> infrastructure software and services around the whole data lifecycle, +> including integration, storage, governance, modeling, analysis, +> mining and circulation. +> +> `Transwarp` focuses on technology research and +> development and has accumulated core technologies in these aspects: +> distributed computing, SQL compilations, database technology, +> unification for multi-model data management, container-based cloud computing, +> and big data analytics and intelligence. + +## Installation + +You have to install several python packages: + +```bash +pip install -U tiktoken hippo-api +``` + +and get the connection configuration. + +## Vector stores + +### Hippo + +See [a usage example and installation instructions](/docs/integrations/vectorstores/hippo). + +```python +from langchain_community.vectorstores.hippo import Hippo +``` diff --git a/docs/docs/integrations/providers/upstage.ipynb b/docs/docs/integrations/providers/upstage.ipynb index b43bfe163d2..9dfce63e351 100644 --- a/docs/docs/integrations/providers/upstage.ipynb +++ b/docs/docs/integrations/providers/upstage.ipynb @@ -6,45 +6,18 @@ "source": [ "# Upstage\n", "\n", - "[Upstage](https://upstage.ai) is a leading artificial intelligence (AI) company specializing in delivering above-human-grade performance LLM components. \n" + ">[Upstage](https://upstage.ai) is a leading artificial intelligence (AI) company specializing in delivering above-human-grade performance LLM components.\n", + ">\n", + ">**Solar Mini Chat** is a fast yet powerful advanced large language model focusing on English and Korean. It has been specifically fine-tuned for multi-turn chat purposes, showing enhanced performance across a wide range of natural language processing tasks, like multi-turn conversation or tasks that require an understanding of long contexts, such as RAG (Retrieval-Augmented Generation), compared to other models of a similar size. This fine-tuning equips it with the ability to handle longer conversations more effectively, making it particularly adept for interactive applications.\n", + "\n", + ">Other than Solar, Upstage also offers features for real-world RAG (retrieval-augmented generation), such as **Groundedness Check** and **Layout Analysis**. \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Solar LLM\n", - "\n", - "**Solar Mini Chat** is a fast yet powerful advanced large language model focusing on English and Korean. It has been specifically fine-tuned for multi-turn chat purposes, showing enhanced performance across a wide range of natural language processing tasks, like multi-turn conversation or tasks that require an understanding of long contexts, such as RAG (Retrieval-Augmented Generation), compared to other models of a similar size. This fine-tuning equips it with the ability to handle longer conversations more effectively, making it particularly adept for interactive applications.\n", - "\n", - "Other than Solar, Upstage also offers features for real-world RAG (retrieval-augmented generation), such as **Groundedness Check** and **Layout Analysis**. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Installation and Setup\n", - "\n", - "Install `langchain-upstage` package:\n", - "\n", - "```bash\n", - "pip install -qU langchain-core langchain-upstage\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Get [API Keys](https://console.upstage.ai) and set environment variable `UPSTAGE_API_KEY`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Upstage LangChain integrations\n", + "### Upstage LangChain integrations\n", "\n", "| API | Description | Import | Example usage |\n", "| --- | --- | --- | --- |\n", @@ -60,9 +33,20 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Quick Examples\n", + "## Installation and Setup\n", "\n", - "### Environment Setup" + "Install `langchain-upstage` package:\n", + "\n", + "```bash\n", + "pip install -qU langchain-core langchain-upstage\n", + "```\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get [API Keys](https://console.upstage.ai) and set environment variable `UPSTAGE_API_KEY`." ] }, { @@ -80,8 +64,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "## Chat models\n", "\n", - "### Chat\n" + "### Solar LLM\n", + "\n", + "See [a usage example](/docs/integrations/chat/upstage)." ] }, { @@ -101,10 +88,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "## Embedding models\n", "\n", - "\n", - "### Text embedding\n", - "\n" + "See [a usage example](/docs/integrations/text_embedding/upstage)." ] }, { @@ -134,7 +120,45 @@ } }, "source": [ - "### Groundedness Check" + "## Document loader\n", + "\n", + "### Layout Analysis\n", + "\n", + "See [a usage example](/docs/integrations/document_loaders/upstage)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_upstage import UpstageLayoutAnalysisLoader\n", + "\n", + "file_path = \"/PATH/TO/YOUR/FILE.pdf\"\n", + "layzer = UpstageLayoutAnalysisLoader(file_path, split=\"page\")\n", + "\n", + "# For improved memory efficiency, consider using the lazy_load method to load documents page by page.\n", + "docs = layzer.load() # or layzer.lazy_load()\n", + "\n", + "for doc in docs[:3]:\n", + " print(doc)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "source": [ + "## Tools\n", + "\n", + "### Groundedness Check\n", + "\n", + "See [a usage example](/docs/integrations/tools/upstage_groundedness_check)." ] }, { @@ -159,36 +183,6 @@ "response = groundedness_check.invoke(request_input)\n", "print(response)" ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "source": [ - "### Layout Analysis" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from langchain_upstage import UpstageLayoutAnalysisLoader\n", - "\n", - "file_path = \"/PATH/TO/YOUR/FILE.pdf\"\n", - "layzer = UpstageLayoutAnalysisLoader(file_path, split=\"page\")\n", - "\n", - "# For improved memory efficiency, consider using the lazy_load method to load documents page by page.\n", - "docs = layzer.load() # or layzer.lazy_load()\n", - "\n", - "for doc in docs[:3]:\n", - " print(doc)" - ] } ], "metadata": { @@ -210,7 +204,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.10.12" } }, "nbformat": 4,